Computational non-chemically equilibrium model on the current zero simulation in a model N2 circuit breaker under the free recovery condition

Hao Sun, Yasunori Tanaka, Kentaro Tomita, Yi Wu, Mingzhe Rong, Yoshihiko Uesugi, Tatsuo Ishijima

研究成果: Contribution to journalArticle査読

18 被引用数 (Scopus)

抄録

A non-chemically equilibrium (non-CE) model was established to investigate the N2 arc plasma in the decaying phase during the arc interruption, and was validated by comparison with the experimental results based on laser Thomson scattering. Unlike the conventional model assuming the local thermodynamic equilibrium (LTE), in this non-CE model, the magneto-hydro-dynamics (MHD) method was coupled with the reaction kinetics to obtain the time-dependent species compositions and properties. The current calculation took into account five species in hot gas and 22 chemical reactions in total. The time-dependent species compositions of hot N2 were derived from the mass conservation equation for each species, considering the effect of the convection, diffusion and the chemical reaction. The influence of the non-CE compositions on the arc decaying behavior was realized by updating the thermodynamic and transport properties at each iterative step. The results indicate that the non-CE model can result in the departure of the arc decaying behavior from the LTE model, because it alters the time evolution of the species composition and consequently changes the thermodynamic and transport properties. At the edge of the arc, the time evolutions of the species are dominant by both the diffusion and the chemical reactions while at the center of the arc they are mainly influenced by the chemical reactions. Generally, the non-CE effect can lead to the delay of all the particles' variations, particularly the electron decay, so that the arc interruption performance will be reduced compared with that in the LTE model.

本文言語英語
論文番号055204
ジャーナルJournal of Physics D: Applied Physics
49
5
DOI
出版ステータス出版済み - 12 23 2015

All Science Journal Classification (ASJC) codes

  • 電子材料、光学材料、および磁性材料
  • 凝縮系物理学
  • 音響学および超音波学
  • 表面、皮膜および薄膜

フィンガープリント

「Computational non-chemically equilibrium model on the current zero simulation in a model N<sub>2</sub> circuit breaker under the free recovery condition」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル