Computing all distinct squares in linear time for integer alphabets

研究成果: 著書/レポートタイプへの貢献会議での発言

3 引用 (Scopus)

抄録

Given a string on an integer alphabet, we present an algorithm that computes the set of all distinct squares belonging to this string in time linear in the string length. As an application, we show how to compute the tree topology of the minimal augmented suffix tree in linear time. Asides from that, we elaborate an algorithm computing the longest previous table in a succinct representation using compressed working space.

元の言語英語
ホスト出版物のタイトル28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017
出版者Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
78
ISBN(電子版)9783959770392
DOI
出版物ステータス出版済み - 7 1 2017
イベント28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017 - Warsaw, ポーランド
継続期間: 7 4 20177 6 2017

その他

その他28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017
ポーランド
Warsaw
期間7/4/177/6/17

Fingerprint

Topology

All Science Journal Classification (ASJC) codes

  • Software

これを引用

Bannai, H., Inenaga, S., & Köppl, D. (2017). Computing all distinct squares in linear time for integer alphabets. : 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017 (巻 78). [22] Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.CPM.2017.22

Computing all distinct squares in linear time for integer alphabets. / Bannai, Hideo; Inenaga, Shunsuke; Köppl, Dominik.

28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017. 巻 78 Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2017. 22.

研究成果: 著書/レポートタイプへの貢献会議での発言

Bannai, H, Inenaga, S & Köppl, D 2017, Computing all distinct squares in linear time for integer alphabets. : 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017. 巻. 78, 22, Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017, Warsaw, ポーランド, 7/4/17. https://doi.org/10.4230/LIPIcs.CPM.2017.22
Bannai H, Inenaga S, Köppl D. Computing all distinct squares in linear time for integer alphabets. : 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017. 巻 78. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. 2017. 22 https://doi.org/10.4230/LIPIcs.CPM.2017.22
Bannai, Hideo ; Inenaga, Shunsuke ; Köppl, Dominik. / Computing all distinct squares in linear time for integer alphabets. 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017. 巻 78 Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2017.
@inproceedings{45e2f3b03668458d816119f8b981d37c,
title = "Computing all distinct squares in linear time for integer alphabets",
abstract = "Given a string on an integer alphabet, we present an algorithm that computes the set of all distinct squares belonging to this string in time linear in the string length. As an application, we show how to compute the tree topology of the minimal augmented suffix tree in linear time. Asides from that, we elaborate an algorithm computing the longest previous table in a succinct representation using compressed working space.",
author = "Hideo Bannai and Shunsuke Inenaga and Dominik K{\"o}ppl",
year = "2017",
month = "7",
day = "1",
doi = "10.4230/LIPIcs.CPM.2017.22",
language = "English",
volume = "78",
booktitle = "28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017",
publisher = "Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing",

}

TY - GEN

T1 - Computing all distinct squares in linear time for integer alphabets

AU - Bannai, Hideo

AU - Inenaga, Shunsuke

AU - Köppl, Dominik

PY - 2017/7/1

Y1 - 2017/7/1

N2 - Given a string on an integer alphabet, we present an algorithm that computes the set of all distinct squares belonging to this string in time linear in the string length. As an application, we show how to compute the tree topology of the minimal augmented suffix tree in linear time. Asides from that, we elaborate an algorithm computing the longest previous table in a succinct representation using compressed working space.

AB - Given a string on an integer alphabet, we present an algorithm that computes the set of all distinct squares belonging to this string in time linear in the string length. As an application, we show how to compute the tree topology of the minimal augmented suffix tree in linear time. Asides from that, we elaborate an algorithm computing the longest previous table in a succinct representation using compressed working space.

UR - http://www.scopus.com/inward/record.url?scp=85027249545&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85027249545&partnerID=8YFLogxK

U2 - 10.4230/LIPIcs.CPM.2017.22

DO - 10.4230/LIPIcs.CPM.2017.22

M3 - Conference contribution

VL - 78

BT - 28th Annual Symposium on Combinatorial Pattern Matching, CPM 2017

PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

ER -