Computing longest common square subsequences

Takafumi Inoue, Shunsuke Inenaga, Heikki Hyyrö, Hideo Bannai, Masayuki Takeda

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

4 被引用数 (Scopus)

抄録

A square is a non-empty string of form Y Y. The longest common square subsequence (LCSqS) problem is to compute a longest square occurring as a subsequence in two given strings A and B. We show that the problem can easily be solved in O(n6) time or O(|M|n4) time with O(n4) space, where n is the length of the strings and M is the set of matching points between A and B. Then, we show that the problem can also be solved in O(σ|M|3 + n) time and O(|M|2 + n) space, or in O(|M|3 log2 n log log n + n) time with O(|M|3 + n) space, where σ is the number of distinct characters occurring in A and B. We also study lower bounds for the LCSqS problem for two or more strings.

本文言語英語
ホスト出版物のタイトル29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018
編集者Binhai Zhu, Gonzalo Navarro, David Sankoff
出版社Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ページ151-1513
ページ数1363
ISBN(電子版)9783959770743
DOI
出版ステータス出版済み - 5 1 2018
イベント29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018 - Qingdao, 中国
継続期間: 7 2 20187 4 2018

出版物シリーズ

名前Leibniz International Proceedings in Informatics, LIPIcs
105
ISSN(印刷版)1868-8969

その他

その他29th Annual Symposium on Combinatorial Pattern Matching, CPM 2018
Country中国
CityQingdao
Period7/2/187/4/18

All Science Journal Classification (ASJC) codes

  • Software

引用スタイル