Computing runs on a trie

研究成果: 著書/レポートタイプへの貢献会議での発言

抄録

A maximal repetition, or run, in a string, is a maximal periodic substring whose smallest period is at most half the length of the substring. In this paper, we consider runs that correspond to a path on a trie, or in other words, on a rooted edge-labeled tree where the endpoints of the path must be a descendant/ancestor of the other. For a trie with n edges, we show that the number of runs is less than n. We also show an O(n√log n log log n) time and O(n) space algorithm for counting and finding the shallower endpoint of all runs. We further show an O(n log n) time and O(n) space algorithm for finding both endpoints of all runs. We also discuss how to improve the running time even more.

元の言語英語
ホスト出版物のタイトル30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019
編集者Nadia Pisanti, Solon P. Pissis
出版者Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN(電子版)9783959771030
DOI
出版物ステータス出版済み - 6 1 2019
イベント30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019 - Pisa, イタリア
継続期間: 6 18 20196 20 2019

出版物シリーズ

名前Leibniz International Proceedings in Informatics, LIPIcs
128
ISSN(印刷物)1868-8969

会議

会議30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019
イタリア
Pisa
期間6/18/196/20/19

All Science Journal Classification (ASJC) codes

  • Software

これを引用

Sugahara, R., Nakashima, Y., Inenaga, S., Bannai, H., & Takeda, M. (2019). Computing runs on a trie. : N. Pisanti, & S. P. Pissis (版), 30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019 [23] (Leibniz International Proceedings in Informatics, LIPIcs; 巻数 128). Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. https://doi.org/10.4230/LIPIcs.CPM.2019.23

Computing runs on a trie. / Sugahara, Ryo; Nakashima, Yuto; Inenaga, Shunsuke; Bannai, Hideo; Takeda, Masayuki.

30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019. 版 / Nadia Pisanti; Solon P. Pissis. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2019. 23 (Leibniz International Proceedings in Informatics, LIPIcs; 巻 128).

研究成果: 著書/レポートタイプへの貢献会議での発言

Sugahara, R, Nakashima, Y, Inenaga, S, Bannai, H & Takeda, M 2019, Computing runs on a trie. : N Pisanti & SP Pissis (版), 30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019., 23, Leibniz International Proceedings in Informatics, LIPIcs, 巻. 128, Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019, Pisa, イタリア, 6/18/19. https://doi.org/10.4230/LIPIcs.CPM.2019.23
Sugahara R, Nakashima Y, Inenaga S, Bannai H, Takeda M. Computing runs on a trie. : Pisanti N, Pissis SP, 編集者, 30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. 2019. 23. (Leibniz International Proceedings in Informatics, LIPIcs). https://doi.org/10.4230/LIPIcs.CPM.2019.23
Sugahara, Ryo ; Nakashima, Yuto ; Inenaga, Shunsuke ; Bannai, Hideo ; Takeda, Masayuki. / Computing runs on a trie. 30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019. 編集者 / Nadia Pisanti ; Solon P. Pissis. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing, 2019. (Leibniz International Proceedings in Informatics, LIPIcs).
@inproceedings{a8249056e9904018b505d49c2f852b83,
title = "Computing runs on a trie",
abstract = "A maximal repetition, or run, in a string, is a maximal periodic substring whose smallest period is at most half the length of the substring. In this paper, we consider runs that correspond to a path on a trie, or in other words, on a rooted edge-labeled tree where the endpoints of the path must be a descendant/ancestor of the other. For a trie with n edges, we show that the number of runs is less than n. We also show an O(n√log n log log n) time and O(n) space algorithm for counting and finding the shallower endpoint of all runs. We further show an O(n log n) time and O(n) space algorithm for finding both endpoints of all runs. We also discuss how to improve the running time even more.",
author = "Ryo Sugahara and Yuto Nakashima and Shunsuke Inenaga and Hideo Bannai and Masayuki Takeda",
year = "2019",
month = "6",
day = "1",
doi = "10.4230/LIPIcs.CPM.2019.23",
language = "English",
series = "Leibniz International Proceedings in Informatics, LIPIcs",
publisher = "Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing",
editor = "Nadia Pisanti and Pissis, {Solon P.}",
booktitle = "30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019",

}

TY - GEN

T1 - Computing runs on a trie

AU - Sugahara, Ryo

AU - Nakashima, Yuto

AU - Inenaga, Shunsuke

AU - Bannai, Hideo

AU - Takeda, Masayuki

PY - 2019/6/1

Y1 - 2019/6/1

N2 - A maximal repetition, or run, in a string, is a maximal periodic substring whose smallest period is at most half the length of the substring. In this paper, we consider runs that correspond to a path on a trie, or in other words, on a rooted edge-labeled tree where the endpoints of the path must be a descendant/ancestor of the other. For a trie with n edges, we show that the number of runs is less than n. We also show an O(n√log n log log n) time and O(n) space algorithm for counting and finding the shallower endpoint of all runs. We further show an O(n log n) time and O(n) space algorithm for finding both endpoints of all runs. We also discuss how to improve the running time even more.

AB - A maximal repetition, or run, in a string, is a maximal periodic substring whose smallest period is at most half the length of the substring. In this paper, we consider runs that correspond to a path on a trie, or in other words, on a rooted edge-labeled tree where the endpoints of the path must be a descendant/ancestor of the other. For a trie with n edges, we show that the number of runs is less than n. We also show an O(n√log n log log n) time and O(n) space algorithm for counting and finding the shallower endpoint of all runs. We further show an O(n log n) time and O(n) space algorithm for finding both endpoints of all runs. We also discuss how to improve the running time even more.

UR - http://www.scopus.com/inward/record.url?scp=85068064626&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85068064626&partnerID=8YFLogxK

U2 - 10.4230/LIPIcs.CPM.2019.23

DO - 10.4230/LIPIcs.CPM.2019.23

M3 - Conference contribution

T3 - Leibniz International Proceedings in Informatics, LIPIcs

BT - 30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019

A2 - Pisanti, Nadia

A2 - Pissis, Solon P.

PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing

ER -