Computing runs on a trie

Ryo Sugahara, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

抄録

A maximal repetition, or run, in a string, is a maximal periodic substring whose smallest period is at most half the length of the substring. In this paper, we consider runs that correspond to a path on a trie, or in other words, on a rooted edge-labeled tree where the endpoints of the path must be a descendant/ancestor of the other. For a trie with n edges, we show that the number of runs is less than n. We also show an O(n√log n log log n) time and O(n) space algorithm for counting and finding the shallower endpoint of all runs. We further show an O(n log n) time and O(n) space algorithm for finding both endpoints of all runs. We also discuss how to improve the running time even more.

本文言語英語
ホスト出版物のタイトル30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019
編集者Nadia Pisanti, Solon P. Pissis
出版社Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN(電子版)9783959771030
DOI
出版ステータス出版済み - 6 1 2019
イベント30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019 - Pisa, イタリア
継続期間: 6 18 20196 20 2019

出版物シリーズ

名前Leibniz International Proceedings in Informatics, LIPIcs
128
ISSN(印刷版)1868-8969

会議

会議30th Annual Symposium on Combinatorial Pattern Matching, CPM 2019
国/地域イタリア
CityPisa
Period6/18/196/20/19

All Science Journal Classification (ASJC) codes

  • ソフトウェア

引用スタイル