Connexin 30 deficiency attenuates A2 astrocyte responses and induces severe neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride Parkinson's disease animal model

Atsushi Fujita, hiroo yamaguchi, Ryo Yamasaki, Yiwen Cui, Yuta Matsuoka, Ken-Ichi Yamada, Jun-Ichi Kira

研究成果: ジャーナルへの寄稿記事

5 引用 (Scopus)

抄録

Background: The first pathology observed in Parkinson's disease (PD) is 'dying back' of striatal dopaminergic (DA) terminals. Connexin (Cx)30, an astrocytic gap junction protein, is upregulated in the striatum in PD, but its roles in neurodegeneration remain elusive. We investigated Cx30 function in an acute PD model by administering 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to wild-type (WT) and Cx30 knockout (KO) mice. Methods: On days 1 and 7 after MPTP administration, we evaluated changes in astrocytic Cx30, Cx43, glial fibrillary acidic protein, and ionised calcium-binding adapter molecule 1 expression by immunostaining and biochemical analysis. Loss of DA neurons was evaluated by tyrosine hydroxylase immunostaining. Gene expression was analysed using A1, A2, pan-reactive astrocyte microarray gene sets, and M1, M2, and M1/M2 mixed microglial microarray gene sets. Real-time PCR and in situ hybridisation were performed to evaluate glial cell-derived neurotrophic factor (Gdnf) and S100a10 expression. Striatal GDNF protein levels were determined by enzyme-linked immunosorbent assay. Results: MPTP treatment induced upregulation of Cx30 and Cx43 levels in the striatum of WT and KO mice. DA neuron loss was accelerated in Cx30 KO compared with WT mice after MPTP administration, despite no change in the striatal concentration of methyl-4-phenylpyridinium+. Astrogliosis in the striatum of Cx30 KO mice was attenuated by MPTP, whereas microglial activation was unaffected. Microarrays of the striatum showed reduced expression of pan-reactive and A2 astrocyte genes after MPTP treatment in Cx30 KO compared with WT mice, while M1, M2, and M1/M2 mixed microglial gene expression did not change. MPTP reduced the number of striatal astrocytes co-expressing Gdnf mRNA and S100β protein or S100a10 mRNA and S100β protein and also reduced the level of GDNF in the striatum of Cx30 KO compared with WT mice. Conclusions: These findings indicate that Cx30 plays critical roles in astrocyte neuroprotection in an MPTP PD model.

元の言語英語
記事番号227
ジャーナルJournal of Neuroinflammation
15
発行部数1
DOI
出版物ステータス出版済み - 8 13 2018

Fingerprint

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
Connexins
varespladib methyl
Astrocytes
Parkinson Disease
Animal Models
Corpus Striatum
Knockout Mice
Glial Cell Line-Derived Neurotrophic Factor
Connexin 43
S100 Proteins
Dopaminergic Neurons
Nerve Growth Factors
Neuroglia
Genes
Gene Expression
Messenger RNA
Glial Fibrillary Acidic Protein
Tyrosine 3-Monooxygenase
Acute Disease

All Science Journal Classification (ASJC) codes

  • Neuroscience(all)
  • Immunology
  • Neurology
  • Cellular and Molecular Neuroscience

これを引用

@article{6ee2fb2b94894c438a8374415c37571a,
title = "Connexin 30 deficiency attenuates A2 astrocyte responses and induces severe neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride Parkinson's disease animal model",
abstract = "Background: The first pathology observed in Parkinson's disease (PD) is 'dying back' of striatal dopaminergic (DA) terminals. Connexin (Cx)30, an astrocytic gap junction protein, is upregulated in the striatum in PD, but its roles in neurodegeneration remain elusive. We investigated Cx30 function in an acute PD model by administering 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to wild-type (WT) and Cx30 knockout (KO) mice. Methods: On days 1 and 7 after MPTP administration, we evaluated changes in astrocytic Cx30, Cx43, glial fibrillary acidic protein, and ionised calcium-binding adapter molecule 1 expression by immunostaining and biochemical analysis. Loss of DA neurons was evaluated by tyrosine hydroxylase immunostaining. Gene expression was analysed using A1, A2, pan-reactive astrocyte microarray gene sets, and M1, M2, and M1/M2 mixed microglial microarray gene sets. Real-time PCR and in situ hybridisation were performed to evaluate glial cell-derived neurotrophic factor (Gdnf) and S100a10 expression. Striatal GDNF protein levels were determined by enzyme-linked immunosorbent assay. Results: MPTP treatment induced upregulation of Cx30 and Cx43 levels in the striatum of WT and KO mice. DA neuron loss was accelerated in Cx30 KO compared with WT mice after MPTP administration, despite no change in the striatal concentration of methyl-4-phenylpyridinium+. Astrogliosis in the striatum of Cx30 KO mice was attenuated by MPTP, whereas microglial activation was unaffected. Microarrays of the striatum showed reduced expression of pan-reactive and A2 astrocyte genes after MPTP treatment in Cx30 KO compared with WT mice, while M1, M2, and M1/M2 mixed microglial gene expression did not change. MPTP reduced the number of striatal astrocytes co-expressing Gdnf mRNA and S100β protein or S100a10 mRNA and S100β protein and also reduced the level of GDNF in the striatum of Cx30 KO compared with WT mice. Conclusions: These findings indicate that Cx30 plays critical roles in astrocyte neuroprotection in an MPTP PD model.",
author = "Atsushi Fujita and hiroo yamaguchi and Ryo Yamasaki and Yiwen Cui and Yuta Matsuoka and Ken-Ichi Yamada and Jun-Ichi Kira",
year = "2018",
month = "8",
day = "13",
doi = "10.1186/s12974-018-1251-0",
language = "English",
volume = "15",
journal = "Journal of Neuroinflammation",
issn = "1742-2094",
publisher = "BioMed Central",
number = "1",

}

TY - JOUR

T1 - Connexin 30 deficiency attenuates A2 astrocyte responses and induces severe neurodegeneration in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride Parkinson's disease animal model

AU - Fujita, Atsushi

AU - yamaguchi, hiroo

AU - Yamasaki, Ryo

AU - Cui, Yiwen

AU - Matsuoka, Yuta

AU - Yamada, Ken-Ichi

AU - Kira, Jun-Ichi

PY - 2018/8/13

Y1 - 2018/8/13

N2 - Background: The first pathology observed in Parkinson's disease (PD) is 'dying back' of striatal dopaminergic (DA) terminals. Connexin (Cx)30, an astrocytic gap junction protein, is upregulated in the striatum in PD, but its roles in neurodegeneration remain elusive. We investigated Cx30 function in an acute PD model by administering 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to wild-type (WT) and Cx30 knockout (KO) mice. Methods: On days 1 and 7 after MPTP administration, we evaluated changes in astrocytic Cx30, Cx43, glial fibrillary acidic protein, and ionised calcium-binding adapter molecule 1 expression by immunostaining and biochemical analysis. Loss of DA neurons was evaluated by tyrosine hydroxylase immunostaining. Gene expression was analysed using A1, A2, pan-reactive astrocyte microarray gene sets, and M1, M2, and M1/M2 mixed microglial microarray gene sets. Real-time PCR and in situ hybridisation were performed to evaluate glial cell-derived neurotrophic factor (Gdnf) and S100a10 expression. Striatal GDNF protein levels were determined by enzyme-linked immunosorbent assay. Results: MPTP treatment induced upregulation of Cx30 and Cx43 levels in the striatum of WT and KO mice. DA neuron loss was accelerated in Cx30 KO compared with WT mice after MPTP administration, despite no change in the striatal concentration of methyl-4-phenylpyridinium+. Astrogliosis in the striatum of Cx30 KO mice was attenuated by MPTP, whereas microglial activation was unaffected. Microarrays of the striatum showed reduced expression of pan-reactive and A2 astrocyte genes after MPTP treatment in Cx30 KO compared with WT mice, while M1, M2, and M1/M2 mixed microglial gene expression did not change. MPTP reduced the number of striatal astrocytes co-expressing Gdnf mRNA and S100β protein or S100a10 mRNA and S100β protein and also reduced the level of GDNF in the striatum of Cx30 KO compared with WT mice. Conclusions: These findings indicate that Cx30 plays critical roles in astrocyte neuroprotection in an MPTP PD model.

AB - Background: The first pathology observed in Parkinson's disease (PD) is 'dying back' of striatal dopaminergic (DA) terminals. Connexin (Cx)30, an astrocytic gap junction protein, is upregulated in the striatum in PD, but its roles in neurodegeneration remain elusive. We investigated Cx30 function in an acute PD model by administering 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to wild-type (WT) and Cx30 knockout (KO) mice. Methods: On days 1 and 7 after MPTP administration, we evaluated changes in astrocytic Cx30, Cx43, glial fibrillary acidic protein, and ionised calcium-binding adapter molecule 1 expression by immunostaining and biochemical analysis. Loss of DA neurons was evaluated by tyrosine hydroxylase immunostaining. Gene expression was analysed using A1, A2, pan-reactive astrocyte microarray gene sets, and M1, M2, and M1/M2 mixed microglial microarray gene sets. Real-time PCR and in situ hybridisation were performed to evaluate glial cell-derived neurotrophic factor (Gdnf) and S100a10 expression. Striatal GDNF protein levels were determined by enzyme-linked immunosorbent assay. Results: MPTP treatment induced upregulation of Cx30 and Cx43 levels in the striatum of WT and KO mice. DA neuron loss was accelerated in Cx30 KO compared with WT mice after MPTP administration, despite no change in the striatal concentration of methyl-4-phenylpyridinium+. Astrogliosis in the striatum of Cx30 KO mice was attenuated by MPTP, whereas microglial activation was unaffected. Microarrays of the striatum showed reduced expression of pan-reactive and A2 astrocyte genes after MPTP treatment in Cx30 KO compared with WT mice, while M1, M2, and M1/M2 mixed microglial gene expression did not change. MPTP reduced the number of striatal astrocytes co-expressing Gdnf mRNA and S100β protein or S100a10 mRNA and S100β protein and also reduced the level of GDNF in the striatum of Cx30 KO compared with WT mice. Conclusions: These findings indicate that Cx30 plays critical roles in astrocyte neuroprotection in an MPTP PD model.

UR - http://www.scopus.com/inward/record.url?scp=85051713532&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85051713532&partnerID=8YFLogxK

U2 - 10.1186/s12974-018-1251-0

DO - 10.1186/s12974-018-1251-0

M3 - Article

VL - 15

JO - Journal of Neuroinflammation

JF - Journal of Neuroinflammation

SN - 1742-2094

IS - 1

M1 - 227

ER -