Contact discontinuities in multi-dimensional isentropic euler equations

Jan Brezina, Elisabetta Chiodaroli, Ondřej Kreml

研究成果: ジャーナルへの寄稿記事

3 引用 (Scopus)

抄録

In this note we partially extend the recent nonuniqueness results on admissible weak solutions to the Riemann problem for the 2D compressible isentropic Euler equations. We prove non-uniqueness of admissible weak solutions that start from the Riemann initial data allowing a contact discontinuity to emerge.

元の言語英語
記事番号94
ジャーナルElectronic Journal of Differential Equations
2018
出版物ステータス出版済み - 4 19 2018
外部発表Yes

Fingerprint

Contact Discontinuity
Nonuniqueness
Euler Equations
Weak Solution
Compressible Euler Equations
Cauchy Problem

All Science Journal Classification (ASJC) codes

  • Analysis

これを引用

Contact discontinuities in multi-dimensional isentropic euler equations. / Brezina, Jan; Chiodaroli, Elisabetta; Kreml, Ondřej.

:: Electronic Journal of Differential Equations, 巻 2018, 94, 19.04.2018.

研究成果: ジャーナルへの寄稿記事

@article{8750231dd2c344f5805dba97a45fc37e,
title = "Contact discontinuities in multi-dimensional isentropic euler equations",
abstract = "In this note we partially extend the recent nonuniqueness results on admissible weak solutions to the Riemann problem for the 2D compressible isentropic Euler equations. We prove non-uniqueness of admissible weak solutions that start from the Riemann initial data allowing a contact discontinuity to emerge.",
author = "Jan Brezina and Elisabetta Chiodaroli and Ondřej Kreml",
year = "2018",
month = "4",
day = "19",
language = "English",
volume = "2018",
journal = "Electronic Journal of Differential Equations",
issn = "1072-6691",
publisher = "Texas State University - San Marcos",

}

TY - JOUR

T1 - Contact discontinuities in multi-dimensional isentropic euler equations

AU - Brezina, Jan

AU - Chiodaroli, Elisabetta

AU - Kreml, Ondřej

PY - 2018/4/19

Y1 - 2018/4/19

N2 - In this note we partially extend the recent nonuniqueness results on admissible weak solutions to the Riemann problem for the 2D compressible isentropic Euler equations. We prove non-uniqueness of admissible weak solutions that start from the Riemann initial data allowing a contact discontinuity to emerge.

AB - In this note we partially extend the recent nonuniqueness results on admissible weak solutions to the Riemann problem for the 2D compressible isentropic Euler equations. We prove non-uniqueness of admissible weak solutions that start from the Riemann initial data allowing a contact discontinuity to emerge.

UR - http://www.scopus.com/inward/record.url?scp=85046144841&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85046144841&partnerID=8YFLogxK

M3 - Article

AN - SCOPUS:85046144841

VL - 2018

JO - Electronic Journal of Differential Equations

JF - Electronic Journal of Differential Equations

SN - 1072-6691

M1 - 94

ER -