Continuous adaptive reinforcement learning with the evolution of Self Organizing Classifiers

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

3 被引用数 (Scopus)

抄録

Learning classifier systems have been solving reinforcement learning problems for some time. However, they face difficulties under multi-step continuous problems. Adaptation may also become harder with time since the convergence of the population decreases its diversity. This article demonstrate that the novel Self Organizing Classifiers method can cope with dynamical multi-step continuous problems. Moreover, adaptation remains the same after convergence.

本文言語英語
ホスト出版物のタイトル2013 IEEE 3rd Joint International Conference on Development and Learning and Epigenetic Robotics, ICDL 2013 - Electronic Conference Proceedings
DOI
出版ステータス出版済み - 2013
イベント2013 IEEE 3rd Joint International Conference on Development and Learning and Epigenetic Robotics, ICDL 2013 - Osaka, 日本
継続期間: 8月 18 20138月 22 2013

その他

その他2013 IEEE 3rd Joint International Conference on Development and Learning and Epigenetic Robotics, ICDL 2013
国/地域日本
CityOsaka
Period8/18/138/22/13

!!!All Science Journal Classification (ASJC) codes

  • 人工知能
  • 人間とコンピュータの相互作用
  • ソフトウェア

フィンガープリント

「Continuous adaptive reinforcement learning with the evolution of Self Organizing Classifiers」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル