Convergence of finite dimensional distributions of heat kernel measures on loop groups

研究成果: ジャーナルへの寄稿学術誌査読

4 被引用数 (Scopus)

抄録

In this paper we consider heat kernel measure on loop groups associated to the H 1/2 -metric. Unlike H s -case (s > 1/2), there is a difficulty that H 1/2 is not contained in the space of continuous loops. So we take limits. There are two limiting methods. One is to use delta functions and to let s go down to 1/2. The other is to fix s at 1/2 and to approximate the delta functions. For the second approach, a generalization of heat kernel measures is needed. Then, the first approach can be obtained as a special case of the second one. The limit in the sense of finite dimensional distribution is the fictitious infinite dimensional Haar measure.

本文言語英語
ページ(範囲)311-340
ページ数30
ジャーナルJournal of Functional Analysis
198
2
DOI
出版ステータス出版済み - 3月 10 2003
外部発表はい

!!!All Science Journal Classification (ASJC) codes

  • 分析

フィンガープリント

「Convergence of finite dimensional distributions of heat kernel measures on loop groups」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル