Convergence of the Allen–Cahn equation with a zero Neumann boundary condition on non-convex domains

研究成果: ジャーナルへの寄稿記事

抄録

We study a singular limit problem of the Allen–Cahn equation with a homogeneous Neumann boundary condition on non-convex domains with smooth boundaries under suitable assumptions for initial data. The main result is the convergence of the time parametrized family of the diffused surface energy to Brakke’s mean curvature flow with a generalized right angle condition on the boundary of the domain.

元の言語英語
ページ(範囲)1485-1528
ページ数44
ジャーナルMathematische Annalen
373
発行部数3-4
DOI
出版物ステータス出版済み - 4 1 2019

Fingerprint

Allen-Cahn Equation
Neumann Boundary Conditions
Right angle
Mean Curvature Flow
Singular Limit
Surface Energy
Zero
Family

All Science Journal Classification (ASJC) codes

  • Mathematics(all)

これを引用

Convergence of the Allen–Cahn equation with a zero Neumann boundary condition on non-convex domains. / Kagaya, Takashi.

:: Mathematische Annalen, 巻 373, 番号 3-4, 01.04.2019, p. 1485-1528.

研究成果: ジャーナルへの寄稿記事

@article{29f00653bb0f4281b89c7455f8048e76,
title = "Convergence of the Allen–Cahn equation with a zero Neumann boundary condition on non-convex domains",
abstract = "We study a singular limit problem of the Allen–Cahn equation with a homogeneous Neumann boundary condition on non-convex domains with smooth boundaries under suitable assumptions for initial data. The main result is the convergence of the time parametrized family of the diffused surface energy to Brakke’s mean curvature flow with a generalized right angle condition on the boundary of the domain.",
author = "Takashi Kagaya",
year = "2019",
month = "4",
day = "1",
doi = "10.1007/s00208-018-1720-x",
language = "English",
volume = "373",
pages = "1485--1528",
journal = "Mathematische Annalen",
issn = "0025-5831",
publisher = "Springer New York",
number = "3-4",

}

TY - JOUR

T1 - Convergence of the Allen–Cahn equation with a zero Neumann boundary condition on non-convex domains

AU - Kagaya, Takashi

PY - 2019/4/1

Y1 - 2019/4/1

N2 - We study a singular limit problem of the Allen–Cahn equation with a homogeneous Neumann boundary condition on non-convex domains with smooth boundaries under suitable assumptions for initial data. The main result is the convergence of the time parametrized family of the diffused surface energy to Brakke’s mean curvature flow with a generalized right angle condition on the boundary of the domain.

AB - We study a singular limit problem of the Allen–Cahn equation with a homogeneous Neumann boundary condition on non-convex domains with smooth boundaries under suitable assumptions for initial data. The main result is the convergence of the time parametrized family of the diffused surface energy to Brakke’s mean curvature flow with a generalized right angle condition on the boundary of the domain.

UR - http://www.scopus.com/inward/record.url?scp=85049566971&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85049566971&partnerID=8YFLogxK

U2 - 10.1007/s00208-018-1720-x

DO - 10.1007/s00208-018-1720-x

M3 - Article

AN - SCOPUS:85049566971

VL - 373

SP - 1485

EP - 1528

JO - Mathematische Annalen

JF - Mathematische Annalen

SN - 0025-5831

IS - 3-4

ER -