Convex hull asymptotic shape evolution

Maxim Arnold, Yuliy Baryshnikov, Steven M. Lavalle

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

1 被引用数 (Scopus)

抄録

The asymptotic properties of Rapidly exploring Random Tree (RRT) growth in large spaces is studied both in simulation and analysis. The main phenomenon is that the convex hull of the RRT reliably evolves into an equilateral triangle when grown in a symmetric planar region (a disk). To characterize this and related phenomena from flocking and swarming, a family of dynamical systems based on incremental evolution in the space of shapes is introduced. Basins of attraction over the shape space explain why the number of hull vertices tends to reduce and the shape stabilizes to a regular polygon with no more than four vertices.

本文言語英語
ホスト出版物のタイトルSpringer Tracts in Advanced Robotics
編集者Emilio Frazzoli, Nicholas Roy, Tomas Lozano-Perez, Daniela Rus
出版社Springer Verlag
ページ349-364
ページ数16
ISBN(印刷版)9783642362781
DOI
出版ステータス出版済み - 1 1 2013
外部発表はい
イベント10th International Workshop on the Algorithmic Foundations of Robotics, WAFR 2012 - Cambridge, 米国
継続期間: 6 13 20126 15 2012

出版物シリーズ

名前Springer Tracts in Advanced Robotics
86
ISSN(印刷版)1610-7438
ISSN(電子版)1610-742X

会議

会議10th International Workshop on the Algorithmic Foundations of Robotics, WAFR 2012
Country米国
CityCambridge
Period6/13/126/15/12

All Science Journal Classification (ASJC) codes

  • Electrical and Electronic Engineering
  • Artificial Intelligence

フィンガープリント 「Convex hull asymptotic shape evolution」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル