TY - JOUR
T1 - Cooperative transport between NukFEG and NukH in immunity against the lantibiotic nukacin ISK-1 produced by Staphylococcus warneri ISK-1
AU - Okuda, Ken Ichi
AU - Aso, Yuji
AU - Nakayama, Jiro
AU - Sonomoto, Kenji
PY - 2008/1
Y1 - 2008/1
N2 - Nukacin ISK-1 is a lantibiotic produced by Staphylococcus warneri ISK-1. Previous studies have reported that the self-protection system of the nukacin ISK-1 producer involves the cooperative function of the ABC transporter NukFEG and the lantibiotic-binding immunity protein NukH. In this study, the cooperative mechanism between NukFEG and NukH was characterized by using fluorescein-4-isothiocyanate (FITC)-labeled nukacin ISK-1 (FITC-nuk) to clarify the localization of nukacin ISK-1 in the immunity process. Lactococcus lactis recombinants expressing nukFEGH, nukFEG, or nukH showed immunity against FITC-nuk, suggesting that FITC-nuk was recognized by the self-protection system against nukacin ISK-1. Analysis of the interaction between FITC-nuk and energy-deprived cells of the L. lactis recombinants showed that FITC-nuk specifically bound to cells expressing nukH. The interaction between FITC-nuk and nukH-expressing cells was inhibited by the addition of unlabeled nukacin ISK-1 and its derivatives with deletions of the N-terminal tail region, but not by the addition of a synthesized N-terminal tail region. This suggests that the NukH protein recognizes the C-terminal ring region of nukacin ISK-1. The addition of glucose to nukFEGH-expressing cells treated with FITC-nuk resulted in a time-dependent decrease in fluorescence intensity, indicating that FITC-nuk was transported from the cell membrane by the NukFEG protein. These results revealed that after being captured by NukH in an energy-independent manner, nukacin ISK-1 was transported to the extracellular space by NukFEG in an energy-dependent manner.
AB - Nukacin ISK-1 is a lantibiotic produced by Staphylococcus warneri ISK-1. Previous studies have reported that the self-protection system of the nukacin ISK-1 producer involves the cooperative function of the ABC transporter NukFEG and the lantibiotic-binding immunity protein NukH. In this study, the cooperative mechanism between NukFEG and NukH was characterized by using fluorescein-4-isothiocyanate (FITC)-labeled nukacin ISK-1 (FITC-nuk) to clarify the localization of nukacin ISK-1 in the immunity process. Lactococcus lactis recombinants expressing nukFEGH, nukFEG, or nukH showed immunity against FITC-nuk, suggesting that FITC-nuk was recognized by the self-protection system against nukacin ISK-1. Analysis of the interaction between FITC-nuk and energy-deprived cells of the L. lactis recombinants showed that FITC-nuk specifically bound to cells expressing nukH. The interaction between FITC-nuk and nukH-expressing cells was inhibited by the addition of unlabeled nukacin ISK-1 and its derivatives with deletions of the N-terminal tail region, but not by the addition of a synthesized N-terminal tail region. This suggests that the NukH protein recognizes the C-terminal ring region of nukacin ISK-1. The addition of glucose to nukFEGH-expressing cells treated with FITC-nuk resulted in a time-dependent decrease in fluorescence intensity, indicating that FITC-nuk was transported from the cell membrane by the NukFEG protein. These results revealed that after being captured by NukH in an energy-independent manner, nukacin ISK-1 was transported to the extracellular space by NukFEG in an energy-dependent manner.
UR - http://www.scopus.com/inward/record.url?scp=37549015208&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=37549015208&partnerID=8YFLogxK
U2 - 10.1128/JB.01300-07
DO - 10.1128/JB.01300-07
M3 - Article
C2 - 17951378
AN - SCOPUS:37549015208
SN - 0021-9193
VL - 190
SP - 356
EP - 362
JO - Journal of Bacteriology
JF - Journal of Bacteriology
IS - 1
ER -