Core-binding factor α 1 (Cbfa1) induces osteoblastic differentiation of C2C12 cells without interactions with Smad1 and Smad5

R. Nishimura, K. Hata, S. E. Harris, Fumiyo Ikeda, T. Yoneda

研究成果: ジャーナルへの寄稿記事

106 引用 (Scopus)

抄録

Core-binding factor α 1 (Cbfa1) is an essential transcription factor for osteoblastic differentiation and osteogenesis. Bone morphogenetic protein (BMP) is also a powerful inducer of differentiation of pluripotent mesenchymal cells to osteoblast lineage and bone formation. Recent studies suggest that Cbfa1 plays a critical role during BMP-induced osteoblastic differentiation through association with cytoplasmic BMP signaling molecules, Smads. However, other studies have suggested that Cbfa1 may exhibit its osteogenic function without interaction with Smads. Therefore, it remains unclear whether association with Smad is essential for Cbfa1 function. In this study we examine the effects of Cbfa1 on osteoblastic differentiation in the presence or absence of interactions with Smad1 or Smad5 using C2C12 undifferentiated mesenchymal cells. Cbfa1 expression was induced upon stimulation with BMP-2 in C2C12 cells. Introduction of Cbfa1 into C2C12 cells induced osteoblastic differentiation and promoted transactivation of osteocalcin gene promoter without forming the complex with Smad1 or Smad5. Furthermore, in C2C12 cells in which the association of Cbfa1 with Smad1/Smad5 was prevented by the overexpression of the natural antagonist, Smad6, Cbfa1 still induced osteoblastic differentiation and transactivated osteocalcin gene promoter, regardless of BMP-2 stimulation. These results suggest that the interactions with Smad1 or Smad5 are not essential for Cbfa1 to demonstrate its osteogenic actions. However, interactions with Smad1/Smad5 enhance these osteogenic actions of Cbfa1. Of note, BMP-2-induced or Smad-induced osteoblastic differentiation was inhibited by dominant-negative Cbfa1, suggesting that the function of Cbfa1 is critical for BMP-2-induced osteoblastic differentiation. Our results suggest that Cbfa1 is essential and also sufficient to induce osteoblastic differentiation in undifferentiated mesenchymal cells, and establishment of an association with Smad1/Smad5 enhances the osteogenic actions of Cbfa1. On the other hand, Cbfa1 expression requires the activation of Smad1/Smad5 by BMP-2.

元の言語英語
ページ(範囲)303-312
ページ数10
ジャーナルBone
31
発行部数2
DOI
出版物ステータス出版済み - 8 7 2002
外部発表Yes

Fingerprint

Core Binding Factors
Cell Communication
Bone Morphogenetic Protein 2
Bone Morphogenetic Proteins
Osteocalcin
Osteogenesis

All Science Journal Classification (ASJC) codes

  • Endocrinology, Diabetes and Metabolism
  • Physiology
  • Histology

これを引用

Core-binding factor α 1 (Cbfa1) induces osteoblastic differentiation of C2C12 cells without interactions with Smad1 and Smad5 . / Nishimura, R.; Hata, K.; Harris, S. E.; Ikeda, Fumiyo; Yoneda, T.

:: Bone, 巻 31, 番号 2, 07.08.2002, p. 303-312.

研究成果: ジャーナルへの寄稿記事

Nishimura, R. ; Hata, K. ; Harris, S. E. ; Ikeda, Fumiyo ; Yoneda, T. / Core-binding factor α 1 (Cbfa1) induces osteoblastic differentiation of C2C12 cells without interactions with Smad1 and Smad5 :: Bone. 2002 ; 巻 31, 番号 2. pp. 303-312.
@article{fae1bb9d74374eeb887dde45b655ae12,
title = "Core-binding factor α 1 (Cbfa1) induces osteoblastic differentiation of C2C12 cells without interactions with Smad1 and Smad5",
abstract = "Core-binding factor α 1 (Cbfa1) is an essential transcription factor for osteoblastic differentiation and osteogenesis. Bone morphogenetic protein (BMP) is also a powerful inducer of differentiation of pluripotent mesenchymal cells to osteoblast lineage and bone formation. Recent studies suggest that Cbfa1 plays a critical role during BMP-induced osteoblastic differentiation through association with cytoplasmic BMP signaling molecules, Smads. However, other studies have suggested that Cbfa1 may exhibit its osteogenic function without interaction with Smads. Therefore, it remains unclear whether association with Smad is essential for Cbfa1 function. In this study we examine the effects of Cbfa1 on osteoblastic differentiation in the presence or absence of interactions with Smad1 or Smad5 using C2C12 undifferentiated mesenchymal cells. Cbfa1 expression was induced upon stimulation with BMP-2 in C2C12 cells. Introduction of Cbfa1 into C2C12 cells induced osteoblastic differentiation and promoted transactivation of osteocalcin gene promoter without forming the complex with Smad1 or Smad5. Furthermore, in C2C12 cells in which the association of Cbfa1 with Smad1/Smad5 was prevented by the overexpression of the natural antagonist, Smad6, Cbfa1 still induced osteoblastic differentiation and transactivated osteocalcin gene promoter, regardless of BMP-2 stimulation. These results suggest that the interactions with Smad1 or Smad5 are not essential for Cbfa1 to demonstrate its osteogenic actions. However, interactions with Smad1/Smad5 enhance these osteogenic actions of Cbfa1. Of note, BMP-2-induced or Smad-induced osteoblastic differentiation was inhibited by dominant-negative Cbfa1, suggesting that the function of Cbfa1 is critical for BMP-2-induced osteoblastic differentiation. Our results suggest that Cbfa1 is essential and also sufficient to induce osteoblastic differentiation in undifferentiated mesenchymal cells, and establishment of an association with Smad1/Smad5 enhances the osteogenic actions of Cbfa1. On the other hand, Cbfa1 expression requires the activation of Smad1/Smad5 by BMP-2.",
author = "R. Nishimura and K. Hata and Harris, {S. E.} and Fumiyo Ikeda and T. Yoneda",
year = "2002",
month = "8",
day = "7",
doi = "10.1016/S8756-3282(02)00826-8",
language = "English",
volume = "31",
pages = "303--312",
journal = "Bone",
issn = "8756-3282",
publisher = "Elsevier Inc.",
number = "2",

}

TY - JOUR

T1 - Core-binding factor α 1 (Cbfa1) induces osteoblastic differentiation of C2C12 cells without interactions with Smad1 and Smad5

AU - Nishimura, R.

AU - Hata, K.

AU - Harris, S. E.

AU - Ikeda, Fumiyo

AU - Yoneda, T.

PY - 2002/8/7

Y1 - 2002/8/7

N2 - Core-binding factor α 1 (Cbfa1) is an essential transcription factor for osteoblastic differentiation and osteogenesis. Bone morphogenetic protein (BMP) is also a powerful inducer of differentiation of pluripotent mesenchymal cells to osteoblast lineage and bone formation. Recent studies suggest that Cbfa1 plays a critical role during BMP-induced osteoblastic differentiation through association with cytoplasmic BMP signaling molecules, Smads. However, other studies have suggested that Cbfa1 may exhibit its osteogenic function without interaction with Smads. Therefore, it remains unclear whether association with Smad is essential for Cbfa1 function. In this study we examine the effects of Cbfa1 on osteoblastic differentiation in the presence or absence of interactions with Smad1 or Smad5 using C2C12 undifferentiated mesenchymal cells. Cbfa1 expression was induced upon stimulation with BMP-2 in C2C12 cells. Introduction of Cbfa1 into C2C12 cells induced osteoblastic differentiation and promoted transactivation of osteocalcin gene promoter without forming the complex with Smad1 or Smad5. Furthermore, in C2C12 cells in which the association of Cbfa1 with Smad1/Smad5 was prevented by the overexpression of the natural antagonist, Smad6, Cbfa1 still induced osteoblastic differentiation and transactivated osteocalcin gene promoter, regardless of BMP-2 stimulation. These results suggest that the interactions with Smad1 or Smad5 are not essential for Cbfa1 to demonstrate its osteogenic actions. However, interactions with Smad1/Smad5 enhance these osteogenic actions of Cbfa1. Of note, BMP-2-induced or Smad-induced osteoblastic differentiation was inhibited by dominant-negative Cbfa1, suggesting that the function of Cbfa1 is critical for BMP-2-induced osteoblastic differentiation. Our results suggest that Cbfa1 is essential and also sufficient to induce osteoblastic differentiation in undifferentiated mesenchymal cells, and establishment of an association with Smad1/Smad5 enhances the osteogenic actions of Cbfa1. On the other hand, Cbfa1 expression requires the activation of Smad1/Smad5 by BMP-2.

AB - Core-binding factor α 1 (Cbfa1) is an essential transcription factor for osteoblastic differentiation and osteogenesis. Bone morphogenetic protein (BMP) is also a powerful inducer of differentiation of pluripotent mesenchymal cells to osteoblast lineage and bone formation. Recent studies suggest that Cbfa1 plays a critical role during BMP-induced osteoblastic differentiation through association with cytoplasmic BMP signaling molecules, Smads. However, other studies have suggested that Cbfa1 may exhibit its osteogenic function without interaction with Smads. Therefore, it remains unclear whether association with Smad is essential for Cbfa1 function. In this study we examine the effects of Cbfa1 on osteoblastic differentiation in the presence or absence of interactions with Smad1 or Smad5 using C2C12 undifferentiated mesenchymal cells. Cbfa1 expression was induced upon stimulation with BMP-2 in C2C12 cells. Introduction of Cbfa1 into C2C12 cells induced osteoblastic differentiation and promoted transactivation of osteocalcin gene promoter without forming the complex with Smad1 or Smad5. Furthermore, in C2C12 cells in which the association of Cbfa1 with Smad1/Smad5 was prevented by the overexpression of the natural antagonist, Smad6, Cbfa1 still induced osteoblastic differentiation and transactivated osteocalcin gene promoter, regardless of BMP-2 stimulation. These results suggest that the interactions with Smad1 or Smad5 are not essential for Cbfa1 to demonstrate its osteogenic actions. However, interactions with Smad1/Smad5 enhance these osteogenic actions of Cbfa1. Of note, BMP-2-induced or Smad-induced osteoblastic differentiation was inhibited by dominant-negative Cbfa1, suggesting that the function of Cbfa1 is critical for BMP-2-induced osteoblastic differentiation. Our results suggest that Cbfa1 is essential and also sufficient to induce osteoblastic differentiation in undifferentiated mesenchymal cells, and establishment of an association with Smad1/Smad5 enhances the osteogenic actions of Cbfa1. On the other hand, Cbfa1 expression requires the activation of Smad1/Smad5 by BMP-2.

UR - http://www.scopus.com/inward/record.url?scp=0036021077&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036021077&partnerID=8YFLogxK

U2 - 10.1016/S8756-3282(02)00826-8

DO - 10.1016/S8756-3282(02)00826-8

M3 - Article

C2 - 12151083

AN - SCOPUS:0036021077

VL - 31

SP - 303

EP - 312

JO - Bone

JF - Bone

SN - 8756-3282

IS - 2

ER -