Critical behaviour of self-avoiding walk in five or more dimensions.

Takashi Hara, Gordon Slade

研究成果: Contribution to journalArticle査読

抄録

We use the lace expansion to prove that in five or more dimensions the standard self-avoiding walk on the hypercubic lattice behaves in many respects like the simple random walk. In particular, it is shown that the leading asymptotic behaviour of the number of n-step self-avoiding walks is purely exponential, that the mean-square displacement is asymptotically linear in the number of steps, and that the scaling limit is Gaussian, in the sense of convergence in distribution to Brownian motion. A number of related results are also
本文言語英語
ページ(範囲)417-423
ジャーナルBulletin of the American Mathematical Society
25
出版ステータス出版済み - 1991

フィンガープリント

「Critical behaviour of self-avoiding walk in five or more dimensions.」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル