C1 Approximation of vector fields based on the renormalization group method

Hayato Chiba

研究成果: ジャーナルへの寄稿学術誌査読

33 被引用数 (Scopus)

抄録

The renormalization group (RG) method for differential equations is one of the perturbation methods for obtaining solutions which approximate exact solutions for a long time interval. This article shows that, for a differential equation associated with a given vector field on a manifold, a family of approximate solutions obtained by the RG method defines a vector field which is close to the original vector field in the C1 topology under appropriate assumptions. Furthermore, some topological properties of the original vector field, such as the existence of a normally hyperbolic invariant manifold and its stability, are shown to be inherited from those of the RG equation. This fact is applied to the bifurcation theory.

本文言語英語
ページ(範囲)895-932
ページ数38
ジャーナルSIAM Journal on Applied Dynamical Systems
7
3
DOI
出版ステータス出版済み - 2008

!!!All Science Journal Classification (ASJC) codes

  • 分析
  • モデリングとシミュレーション

フィンガープリント

「C1 Approximation of vector fields based on the renormalization group method」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル