TY - JOUR
T1 - Cycler orbit design using low-thrust in the Sun-Earth-Moon system
AU - Miyahara, Keitaro
AU - Kayama, Yuki
AU - Bando, Mai
AU - Hokamoto, Shinji
N1 - Publisher Copyright:
© 2020 by the International Astronautical Federation (IAF). All rights reserved.
PY - 2020
Y1 - 2020
N2 - Recently, a lot of studies have been focusing on the transfer to the Moon. Cycler orbits which can periodically encounter the Earth and the Moon using swingbys can provide a low-cost transportation system to the Moon. In previous studies, several methods to design cycler orbits have been developed based on the two-body problem. This paper improves the previous studies in terms of the following three factors. First, a cycler orbit is designed in the three-body problem. This expansion is basically difficult due to the sensitivity of the three-body dynamics. To overcome this problem, the orbit generated in the two-body problem of the Earth is used as an initial guess and expanded to the orbit in the three-body problem using multiple-shooting differential correction and mass continuation. Second, the accessibility of the other orbits in the cis-lunar region is investigated. It verifies whether the cycler orbit can connect to a family of Lyapunov orbit in the Earth-Moon system and calculates the required velocity change amount. Finally, the influence of perturbation from the Sun is taken into account. Then a new control method is proposed based on the linear quadratic regulator that enables to eliminate the influence of the Sun in the BCR4BP.
AB - Recently, a lot of studies have been focusing on the transfer to the Moon. Cycler orbits which can periodically encounter the Earth and the Moon using swingbys can provide a low-cost transportation system to the Moon. In previous studies, several methods to design cycler orbits have been developed based on the two-body problem. This paper improves the previous studies in terms of the following three factors. First, a cycler orbit is designed in the three-body problem. This expansion is basically difficult due to the sensitivity of the three-body dynamics. To overcome this problem, the orbit generated in the two-body problem of the Earth is used as an initial guess and expanded to the orbit in the three-body problem using multiple-shooting differential correction and mass continuation. Second, the accessibility of the other orbits in the cis-lunar region is investigated. It verifies whether the cycler orbit can connect to a family of Lyapunov orbit in the Earth-Moon system and calculates the required velocity change amount. Finally, the influence of perturbation from the Sun is taken into account. Then a new control method is proposed based on the linear quadratic regulator that enables to eliminate the influence of the Sun in the BCR4BP.
UR - http://www.scopus.com/inward/record.url?scp=85100947427&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85100947427&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85100947427
SN - 0074-1795
VL - 2020-October
JO - Proceedings of the International Astronautical Congress, IAC
JF - Proceedings of the International Astronautical Congress, IAC
T2 - 71st International Astronautical Congress, IAC 2020
Y2 - 12 October 2020 through 14 October 2020
ER -