Cyclicity in multivariate time series and applications to functional MRI data

Yuliy Baryshnikov, Emily Schlafly

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

3 被引用数 (Scopus)

抄録

One of the challenging problems in fMRI data analysis is the absence of natural time scale at which to consider the traces of the resting state, the aggregate name for the processes in the brain happening in the absence of task of strong external stimuli. This necessitates development of the tools that are able to extract from the time series information invariant with respect to reparametrization of the time coordinate. A recently developed notion of cyclicity, based on the hierarchy of iterated path integrals and corresponding algorithms were applied to several hundreds of the fMRI records, to reveal potential presence of an external auditory stimulus.

本文言語英語
ホスト出版物のタイトル2016 IEEE 55th Conference on Decision and Control, CDC 2016
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1625-1630
ページ数6
ISBN(電子版)9781509018376
DOI
出版ステータス出版済み - 12 27 2016
イベント55th IEEE Conference on Decision and Control, CDC 2016 - Las Vegas, 米国
継続期間: 12 12 201612 14 2016

出版物シリーズ

名前2016 IEEE 55th Conference on Decision and Control, CDC 2016

その他

その他55th IEEE Conference on Decision and Control, CDC 2016
国/地域米国
CityLas Vegas
Period12/12/1612/14/16

All Science Journal Classification (ASJC) codes

  • 人工知能
  • 決定科学(その他)
  • 制御と最適化

フィンガープリント

「Cyclicity in multivariate time series and applications to functional MRI data」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル