Decay estimates of solutions to a semi-linear dissipative plate equation

Yousuke Sugitani, Shuichi Kawashima

研究成果: Contribution to journalArticle査読

52 被引用数 (Scopus)

抄録

We study the initial value problem for a semi-linear dissipative plate equation in n-dimensional space. We observe that the dissipative structure of the linearized equation is of the regularity-loss type. This means that we have the optimal decay estimates of solutions under the additional regularity assumption on the initial data. This regularity-loss property causes the difficulty in solving the nonlinear problem. For our semi-linear problem, this difficulty can be overcome by introducing a set of time-weighted Sobolev spaces, where the time-weights and the regularity of the Sobolev spaces are determined by our regularity-loss property. Consequently, under smallness condition on the initial data, we prove the global existence and optimal decay of the solution in the corresponding Sobolev spaces.

本文言語英語
ページ(範囲)471-501
ページ数31
ジャーナルJournal of Hyperbolic Differential Equations
7
3
DOI
出版ステータス出版済み - 9 1 2010

All Science Journal Classification (ASJC) codes

  • 分析
  • 数学 (全般)

フィンガープリント

「Decay estimates of solutions to a semi-linear dissipative plate equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル