Decay estimates of solutions to a semi-linear dissipative plate equation

Yousuke Sugitani, Shuichi Kawashima

研究成果: Contribution to journalArticle

42 引用 (Scopus)

抜粋

We study the initial value problem for a semi-linear dissipative plate equation in n-dimensional space. We observe that the dissipative structure of the linearized equation is of the regularity-loss type. This means that we have the optimal decay estimates of solutions under the additional regularity assumption on the initial data. This regularity-loss property causes the difficulty in solving the nonlinear problem. For our semi-linear problem, this difficulty can be overcome by introducing a set of time-weighted Sobolev spaces, where the time-weights and the regularity of the Sobolev spaces are determined by our regularity-loss property. Consequently, under smallness condition on the initial data, we prove the global existence and optimal decay of the solution in the corresponding Sobolev spaces.

元の言語英語
ページ(範囲)471-501
ページ数31
ジャーナルJournal of Hyperbolic Differential Equations
7
発行部数3
DOI
出版物ステータス出版済み - 9 1 2010

All Science Journal Classification (ASJC) codes

  • Analysis
  • Mathematics(all)

フィンガープリント Decay estimates of solutions to a semi-linear dissipative plate equation' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用