Decay of correlations in suspension semi-flows of angle-multiplying maps

研究成果: Contribution to journalArticle査読

28 被引用数 (Scopus)

抄録

We consider suspension semi-flows of angle-multiplying maps on the circle for Cr ceiling functions with r3. Under a Crgeneric condition on the ceiling function, we show that there exists a Hilbert space (anisotropic Sobolev space) contained in the L2 space such that the PerronFrobenius operator for the time-t-map acts naturally on it and that the essential spectral radius of that action is bounded by the square root of the inverse of the minimum expansion rate. This leads to a precise description of decay of correlations. Furthermore, the PerronFrobenius operator for the time-t-map is quasi-compact for a Cr open and dense set of ceiling functions.

本文言語英語
ページ(範囲)291-317
ページ数27
ジャーナルErgodic Theory and Dynamical Systems
28
1
DOI
出版ステータス出版済み - 2 2008

All Science Journal Classification (ASJC) codes

  • 数学 (全般)
  • 応用数学

フィンガープリント

「Decay of correlations in suspension semi-flows of angle-multiplying maps」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル