TY - JOUR
T1 - Deep Blue Fluorescent Material with an Extremely High Ratio of Horizontal Orientation to Enhance Light Outcoupling Efficiency (44%) and External Quantum Efficiency in Doped and Non-Doped Organic Light-Emitting Diodes
AU - Lee, Jian Haur
AU - Lin, Hung Yi
AU - Chen, Chia Hsun
AU - Lee, Yi Ting
AU - Chiu, Tien Lung
AU - Lee, Jiun Haw
AU - Chen, Chin Ti
AU - Adachi, Chihaya
N1 - Funding Information:
We thank the Ministry of Science and Technology (MOST 109-2113-M-001-018-), iMATE Program of Academia Sinica, and National Taiwan University.
Publisher Copyright:
© 2021 American Chemical Society.
PY - 2021/7/28
Y1 - 2021/7/28
N2 - A novel bis-4Ph-substituted 9,10-dipehnylanthracene deep blue [1931 CIE (0.15, 0.08)] fluorescent compound, AnB4Ph, has been synthesized and characterized for organic light-emitting diode (OLED) applications. Our experimental study of AnB4Ph excludes the possibility of triplet-triplet annihilation, hybridized local and charge transfer, or thermally activated delayed fluorescent characteristics of the material. Since the solid-state photoluminescence quantum yield of AnB4Ph was determined to be 48%, assuming a 100% for the charge recombination efficiency, the light outcoupling efficiency (ηout) of an AnB4Ph non-doped OLED achieving an external quantum efficiency (EQE) of 5.3% is at least 44%, which is more than twofold higher than 20% for conventional OLEDs. Both grazing incidence wide-angle X-ray scattering (GIWAXS) and angle-dependent photoluminescence (ADPL) measurements reveal AnB4Ph having a high value of order parameter (SGIWAXS) of 0.61 for a ππstacking along the normal direction and an orientation order parameter (SADPL) for a horizontal emitting dipole moment of -0.50 or Θ (horizontal-dipole ratios) of 100%, respectively. Otherwise, a refractive index (n) measurement provides a n = 1.80 for AnB4Ph thin films. Based on ηout = 1.2 × n-2, the calculated ηout is 37%, which is also in accordance with the results of GIWAXS and ADPL. We have also fabricated the classical fluorescent DPAVBi-doped AnB4Ph OLEDs, which display a true blue [1931 CIE (0.15 and 0.16)] electroluminescence with a high efficiency (EQE = 6.9%), surpassing the conventional ∼5% EQE. Based on an ηout of 42% for DPAVBi-doped AnB4Ph OLEDs, our studies suggest that the extremely horizontally aligned AnB4Ph host material exerts the same horizontal alignment on the DPAVBi dopant molecules.
AB - A novel bis-4Ph-substituted 9,10-dipehnylanthracene deep blue [1931 CIE (0.15, 0.08)] fluorescent compound, AnB4Ph, has been synthesized and characterized for organic light-emitting diode (OLED) applications. Our experimental study of AnB4Ph excludes the possibility of triplet-triplet annihilation, hybridized local and charge transfer, or thermally activated delayed fluorescent characteristics of the material. Since the solid-state photoluminescence quantum yield of AnB4Ph was determined to be 48%, assuming a 100% for the charge recombination efficiency, the light outcoupling efficiency (ηout) of an AnB4Ph non-doped OLED achieving an external quantum efficiency (EQE) of 5.3% is at least 44%, which is more than twofold higher than 20% for conventional OLEDs. Both grazing incidence wide-angle X-ray scattering (GIWAXS) and angle-dependent photoluminescence (ADPL) measurements reveal AnB4Ph having a high value of order parameter (SGIWAXS) of 0.61 for a ππstacking along the normal direction and an orientation order parameter (SADPL) for a horizontal emitting dipole moment of -0.50 or Θ (horizontal-dipole ratios) of 100%, respectively. Otherwise, a refractive index (n) measurement provides a n = 1.80 for AnB4Ph thin films. Based on ηout = 1.2 × n-2, the calculated ηout is 37%, which is also in accordance with the results of GIWAXS and ADPL. We have also fabricated the classical fluorescent DPAVBi-doped AnB4Ph OLEDs, which display a true blue [1931 CIE (0.15 and 0.16)] electroluminescence with a high efficiency (EQE = 6.9%), surpassing the conventional ∼5% EQE. Based on an ηout of 42% for DPAVBi-doped AnB4Ph OLEDs, our studies suggest that the extremely horizontally aligned AnB4Ph host material exerts the same horizontal alignment on the DPAVBi dopant molecules.
UR - http://www.scopus.com/inward/record.url?scp=85111603538&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85111603538&partnerID=8YFLogxK
U2 - 10.1021/acsami.1c07859
DO - 10.1021/acsami.1c07859
M3 - Article
C2 - 34264644
AN - SCOPUS:85111603538
SN - 1944-8244
VL - 13
SP - 34605
EP - 34615
JO - ACS applied materials & interfaces
JF - ACS applied materials & interfaces
IS - 29
ER -