DeepJIT: An end-to-end deep learning framework for just-in-time defect prediction

Thong Hoang, Hoa Khanh Dam, Yasutaka Kamei, David Lo, Naoyasu Ubayashi

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

4 引用 (Scopus)

抜粋

Software quality assurance efforts often focus on identifying defective code. To find likely defective code early, change-level defect prediction - aka. Just-In-Time (JIT) defect prediction - has been proposed. JIT defect prediction models identify likely defective changes and they are trained using machine learning techniques with the assumption that historical changes are similar to future ones. Most existing JIT defect prediction approaches make use of manually engineered features. Unlike those approaches, in this paper, we propose an end-to-end deep learning framework, named DeepJIT, that automatically extracts features from commit messages and code changes and use them to identify defects. Experiments on two popular software projects (i.e., QT and OPENSTACK) on three evaluation settings (i.e., cross-validation, short-period, and long-period) show that the best variant of DeepJIT (DeepJIT-Combined), compared with the best performing state-of-the-art approach, achieves improvements of 10.36-11.02% for the project QT and 9.51-13.69% for the project OPENSTACK in terms of the Area Under the Curve (AUC).

元の言語英語
ホスト出版物のタイトルProceedings - 2019 IEEE/ACM 16th International Conference on Mining Software Repositories, MSR 2019
出版者IEEE Computer Society
ページ34-45
ページ数12
ISBN(電子版)9781728134123
DOI
出版物ステータス出版済み - 5 2019
イベント16th IEEE/ACM International Conference on Mining Software Repositories, MSR 2019 - Montreal, カナダ
継続期間: 5 26 20195 27 2019

出版物シリーズ

名前IEEE International Working Conference on Mining Software Repositories
2019-May
ISSN(印刷物)2160-1852
ISSN(電子版)2160-1860

会議

会議16th IEEE/ACM International Conference on Mining Software Repositories, MSR 2019
カナダ
Montreal
期間5/26/195/27/19

All Science Journal Classification (ASJC) codes

  • Computer Science Applications
  • Software

フィンガープリント DeepJIT: An end-to-end deep learning framework for just-in-time defect prediction' の研究トピックを掘り下げます。これらはともに一意のフィンガープリントを構成します。

  • これを引用

    Hoang, T., Khanh Dam, H., Kamei, Y., Lo, D., & Ubayashi, N. (2019). DeepJIT: An end-to-end deep learning framework for just-in-time defect prediction. : Proceedings - 2019 IEEE/ACM 16th International Conference on Mining Software Repositories, MSR 2019 (pp. 34-45). [8816772] (IEEE International Working Conference on Mining Software Repositories; 巻数 2019-May). IEEE Computer Society. https://doi.org/10.1109/MSR.2019.00016