Deletion theorem and combinatorics of hyperplane arrangements

研究成果: Contribution to journalArticle査読

2 被引用数 (Scopus)

抄録

We show that the deletion theorem of a free arrangement is combinatorial, i.e., whether we can delete a hyperplane from a free arrangement keeping freeness depends only on the intersection lattice. In fact, we give a sufficient and necessary condition for the deletion theorem in terms of characteristic polynomials. As a corollary, we prove that whether a free arrangement has a free filtration is also combinatorial. The proof is based on the result about a minimal set of generators of a logarithmic derivation module of a multiarrangement which satisfies the b 2 -equality.

本文言語英語
ページ(範囲)581-595
ページ数15
ジャーナルMathematische Annalen
373
1-2
DOI
出版ステータス出版済み - 2 8 2019

All Science Journal Classification (ASJC) codes

  • 数学 (全般)

フィンガープリント

「Deletion theorem and combinatorics of hyperplane arrangements」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル