Delivery of pebbles from the protoplanetary disk into circumplanetary disks

Toru Homma, Keiji Ohtsuki, Natsuho Maeda, Ryo Suetsugu, Masahiro N. Machida, Takayuki Tanigawa

研究成果: Contribution to journalArticle査読

抄録

Small bodies likely existed in the late stage of planet formation either as remnants of the planetesimal formation stage or as fragments of larger planetesimals. Recent studies suggest that they may have played an important role in the formation of regular satellites of giant planets, but their delivery process into the circumplanetary disk has been poorly understood. Using orbital integration that incorporates the gas flow around the planet obtained by hydrodynamic simulation, we examine delivery of small bodies in the protoplanetary disk into circumplanetary disks. We find that large bodies can be captured when they experience strong gas drag near the midplane of the circumplanetary disk, while particles with Stokes number near unity tend to settle toward the midplane of the protoplanetary disk and can be captured near the outer edge of the circumplanetary disk. On the other hand, small particles coupled to the gas can be delivered into the circumplanetary disk with the vertically accreting gas and are captured near the surface of the circumplanetary disk over a wide radial region, if they are sufficiently stirred off the midplane of the protoplanetary disk. However, if the turbulence in the protoplanetary disk is not sufficiently strong, delivery of small particles by such a mechanism would not be efficient. Also, gas depletion in the vicinity of the planet's orbit reduces the efficiency of the delivery. In these cases, larger bodies directly captured by gas drag from the circumplanetary disk would be the major building blocks of regular satellites.

本文言語英語
論文番号98
ジャーナルAstrophysical Journal
903
2
DOI
出版ステータス出版済み - 11 10 2020

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

フィンガープリント 「Delivery of pebbles from the protoplanetary disk into circumplanetary disks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル