Design Guidelines to Elongate Spin-Lattice Relaxation Times of Porphyrins with Large Triplet Electron Polarization

Akio Yamauchi, Saiya Fujiwara, Koki Nishimura, Yoichi Sasaki, Kenichiro Tateishi, Tomohiro Uesaka, Nobuo Kimizuka, Nobuhiro Yanai

    研究成果: Contribution to journalArticle査読

    抄録

    The spin-polarized triplet state generated by light irradiation has potential for applications such as triplet dynamic nuclear polarization (triplet-DNP). Recently, we have reported free-base porphyrins as versatile and biocompatible polarizing agents for triplet-DNP. However, the electron polarization of free-base porphyrins is not very high, and the dilemma is that the high polarization of metalloporphyrins is accompanied by a too short spin-lattice relaxation time to be used for triplet-DNP. We report here that the introduction of electron-withdrawing fluorine groups into Zn porphyrins enables a long enough spin-lattice relaxation time (>1 μs) while maintaining a high polarization (Px:Py:Pz = 0:0:1.0) at room temperature. Interestingly, the spin-lattice relaxation time of Zn porphyrin becomes much longer by introducing fluorine substituents, whereas the spin-lattice relaxation time of free-base porphyrin becomes shorter by the fluorine substitution. Theoretical calculations suggest that this is because the introduction of the electron-withdrawing fluorine substituents reduces the spin density on Zn atoms and weakens the spin-orbit interaction.

    本文言語英語
    ジャーナルJournal of Physical Chemistry A
    DOI
    出版ステータス受理済み/印刷中 - 2021

    All Science Journal Classification (ASJC) codes

    • 物理化学および理論化学

    フィンガープリント

    「Design Guidelines to Elongate Spin-Lattice Relaxation Times of Porphyrins with Large Triplet Electron Polarization」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル