Detecting academic plagiarism with graphs

Bin Hui Chou, Einoshin Suzuki

研究成果: Contribution to journalConference article査読


In this paper, we tackle the problem of detecting academic plagiarism, which is considered as a severe problem owing to the convenience of online publishing. Typical information retrieval methods, stopword-based methods and fingerprinting methods, are commonly used to detect plagiarism by using the sequence of words as they appear in the article. As such, they fail to detect plagiarism when an author reconstructs a source article by re-ordering and recombining phrases. Because graph structure fits for representing relationships between entities, we propose a novel plagiarism detection method, in which we use graphs to represent documents by modeling grammatical relationships between words. Experimental results show that our proposed method outperforms two n-gram methods and increases recall values by 10 to 20%.

ジャーナルRevue des Nouvelles Technologies de l'Information
出版ステータス出版済み - 5 13 2013
イベント13emes Journees Francophones sur l'Extraction et la Gestion des Connaissances, EGC 2013 - 13th French-Speaking Conference on Knowledge Discovery and Management, EGC 2013 - Toulouse, フランス
継続期間: 1 29 20132 1 2013

All Science Journal Classification (ASJC) codes

  • コンピュータ ネットワークおよび通信
  • コンピュータ サイエンスの応用
  • 情報システム
  • ソフトウェア


「Detecting academic plagiarism with graphs」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。