Development of nanostructured tungsten based materials resistant to recrystallization and/or radiation induced embrittlement

H. Kurishita, H. Arakawa, S. Matsuo, T. Sakamoto, S. Kobayashi, K. Nakai, G. Pintsuk, J. Linke, S. Tsurekawa, V. Yardley, K. Tokunaga, T. Takida, M. Katoh, A. Ikegaya, Y. Ueda, M. Kawai, N. Yoshida

研究成果: Contribution to journalReview article査読

75 被引用数 (Scopus)

抄録

Mitigation of embrittlement caused by recrystallization and radiation is the key issue of tungsten (W based materials for use in the advanced nuclear system such as fusion reactor applications. In this paper, our nanostructured W materials development performed so far to solve the key issue is reviewed, including new original data. Firstly, the basic concept of mitigation of the embrittlement is shown. The approach to the concept has yielded ultra-fine grained, recrystallized (UFGR) W(0.251.5) mass%TiC compacts containing fine TiC dispersoids (precipitates). The UFGR W(0.251.5)% TiC exhibits favorable as well as unfavorable features from the viewpoints of microstructures and various thermo-mechanical properties including the response to neutron and ion irradiations. Most of the unfavorable features stem from insufficient strengthening of weak random grain boundaries (GBs) in the recrystallized state. The focal point on this study is, therefore, to develop a new microstructural modification method to significantly strengthen the random GBs. The method is designated as GSMM (GB Sliding-based Microstructural Modification and has lead to the birth of toughened, fine-grained W1.1% TiC in the recrystallized state (TFGR W1.1TiC). The TFGRW1.1TiC exhibits much improved thermo-mechanical properties. The applicability of TFGRW1.1TiC to the divertor in ITER is discussed.

本文言語英語
ページ(範囲)456-465
ページ数10
ジャーナルMaterials Transactions
54
4
DOI
出版ステータス出版済み - 2013

All Science Journal Classification (ASJC) codes

  • 材料科学(全般)
  • 凝縮系物理学
  • 材料力学
  • 機械工学

フィンガープリント

「Development of nanostructured tungsten based materials resistant to recrystallization and/or radiation induced embrittlement」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル