Development of the cellular automaton model for simulating the propagation extent of debris flow at the alluvial fan: A case study of Yohutagawa, Japan

Z. Han, G. Chen, Y. Li, H. Zhang, F. Fan, P. Jing, W. Wang, S. Zhou, L. Xu, S. Chen

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

1 被引用数 (Scopus)

抄録

As a two-phase anisotropic mixture, debris flowshows some complex fluid-dynamical characteristics on its motion behavior, which makes it difficult to be modelled or simulated through standard approaches. Consequently, Cellular Automaton (CA) model in the field of parallel computing, which has long been verified as efficiently applying in the simulation of complex natural process, are recently introduced to simulate flow-type phenomena. In this paper, the components of CA model for debris-flow simulation are reviewed, after that a two-dimensional cellular space is generated from the Digital Terrain Model (DTM) with 2.5m high-resolution, and the relationship of lattices in the space is defined as Moore neighborhood type. A new transition function, aiming at flow direction determination, is proposed through the way that implementing the debris-flow inertial influence into the traditional topography-based D8 algorithm, by a multiplying equation or an addition equation. We also present a three-step propagation algorithm to integrate the single flow routines, then use the constant discharge model to assign the flow depth to each routine, in this way the propagation area can be gradually delineated through each increment step. We test the developed model with CH87 Brichboden debris-flow event, and illustrate its application withYohutagawa debris-flow event in Japan, 2010. Results of both cases show that a more accurate propagation perimeter pattern is observed using addition equation in the modified flow direction algorithm, comparing to the traditional D8 algorithm and multiplying equation-based algorithm.

本文言語英語
ホスト出版物のタイトルGeomechanics from Micro to Macro - Proceedings of the TC105 ISSMGE International Symposium on Geomechanics from Micro to Macro, IS-Cambridge 2014
出版社Taylor and Francis - Balkema
ページ983-988
ページ数6
ISBN(印刷版)9781138027077
DOI
出版ステータス出版済み - 2015
イベントInternational Symposium on Geomechanics from Micro to Macro, IS-Cambridge 2014 - Cambridge, 英国
継続期間: 9 1 20149 3 2014

出版物シリーズ

名前Geomechanics from Micro to Macro - Proceedings of the TC105 ISSMGE International Symposium on Geomechanics from Micro to Macro, IS-Cambridge 2014
2

その他

その他International Symposium on Geomechanics from Micro to Macro, IS-Cambridge 2014
国/地域英国
CityCambridge
Period9/1/149/3/14

All Science Journal Classification (ASJC) codes

  • 地球物理学

フィンガープリント

「Development of the cellular automaton model for simulating the propagation extent of debris flow at the alluvial fan: A case study of Yohutagawa, Japan」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル