Differentiating primary CNS lymphoma from glioblastoma multiforme: Assessment using arterial spin labeling, diffusion-weighted imaging, and 18F-fluorodeoxyglucose positron emission tomography

Koji Yamashita, Takashi Yoshiura, Akio Hiwatashi, Osamu Togao, Koji Yoshimoto, Satoshi O. Suzuki, Koichiro Abe, Kazufumi Kikuchi, Yasuhiro Maruoka, Masahiro Mizoguchi, Toru Iwaki, Hiroshi Honda

研究成果: ジャーナルへの寄稿記事

68 引用 (Scopus)

抄録

Introduction: Our purpose was to evaluate the diagnostic performance of arterial spin labeling (ASL) perfusion imaging, diffusion-weighted imaging (DWI), and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) in differentiating primary central nervous system lymphomas (PCNSLs) from glioblastoma multiformes (GBMs). Methods: Fifty-six patients including 19 with PCNSL and 37 with GBM were retrospectively studied. From the ASL data, an absolute tumor blood flow (aTBF) and a relative tumor blood flow (rTBF) were obtained within the enhancing portion of each tumor. In addition, the minimum apparent diffusion coefficient (ADCmin) and the maximum standard uptake value (SUVmax) were obtained from DWI and FDG-PET data, respectively. Each of the four parameters was compared between PCNSLs and GBMs using Kruskal-Wallis test. The performance in discriminating between PCNSLs and GBMs was evaluated using the receiver-operating characteristics analysis. Area-under-the-curve (AUC) values were compared among the four parameters using a nonparametric method. Results: The aTBF, rTBF, and ADCmin were significantly higher in GBMs (mean aTBF ± SD = 91.6 ± 56.0 mL/100 g/min, mean rTBF ± SD = 2.61 ± 1.61, mean ADCmin ± SD = 0.78 ± 0.19 × 10-3 mm2/s) than in PCNSLs (mean aTBF ± SD = 37.3 ± 10.5 mL/100 g/min, mean rTBF ± SD = 1.24 ± 0.37, mean ADCmin ± SD = 0.61 ± 0.13 × 10-3 mm2/s) (p < 0.005, respectively). In addition, SUVmax was significantly lower in GBMs (mean ± SD = 13.1 ± 6.34) than in PCNSLs (mean ± SD = 22.5 ± 7.83) (p < 0.005). The AUC for aTBF (0.888) was higher than those for rTBF (0.810), ADCmin (0.768), and SUVmax (0.848), although their difference was not statistically significant. Conclusion: ASL perfusion imaging is useful for differentiating PCNSLs from GBMs as well as DWI and FDG-PET.

元の言語英語
ページ(範囲)135-143
ページ数9
ジャーナルNeuroradiology
55
発行部数2
DOI
出版物ステータス出版済み - 2 1 2013

Fingerprint

Fluorodeoxyglucose F18
Glioblastoma
Positron-Emission Tomography
Lymphoma
Central Nervous System
Neoplasms
Perfusion Imaging
Area Under Curve
ROC Curve

All Science Journal Classification (ASJC) codes

  • Radiology Nuclear Medicine and imaging
  • Clinical Neurology
  • Cardiology and Cardiovascular Medicine

これを引用

@article{8a88c37758df4a348ded165b91b7ad2b,
title = "Differentiating primary CNS lymphoma from glioblastoma multiforme: Assessment using arterial spin labeling, diffusion-weighted imaging, and 18F-fluorodeoxyglucose positron emission tomography",
abstract = "Introduction: Our purpose was to evaluate the diagnostic performance of arterial spin labeling (ASL) perfusion imaging, diffusion-weighted imaging (DWI), and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) in differentiating primary central nervous system lymphomas (PCNSLs) from glioblastoma multiformes (GBMs). Methods: Fifty-six patients including 19 with PCNSL and 37 with GBM were retrospectively studied. From the ASL data, an absolute tumor blood flow (aTBF) and a relative tumor blood flow (rTBF) were obtained within the enhancing portion of each tumor. In addition, the minimum apparent diffusion coefficient (ADCmin) and the maximum standard uptake value (SUVmax) were obtained from DWI and FDG-PET data, respectively. Each of the four parameters was compared between PCNSLs and GBMs using Kruskal-Wallis test. The performance in discriminating between PCNSLs and GBMs was evaluated using the receiver-operating characteristics analysis. Area-under-the-curve (AUC) values were compared among the four parameters using a nonparametric method. Results: The aTBF, rTBF, and ADCmin were significantly higher in GBMs (mean aTBF ± SD = 91.6 ± 56.0 mL/100 g/min, mean rTBF ± SD = 2.61 ± 1.61, mean ADCmin ± SD = 0.78 ± 0.19 × 10-3 mm2/s) than in PCNSLs (mean aTBF ± SD = 37.3 ± 10.5 mL/100 g/min, mean rTBF ± SD = 1.24 ± 0.37, mean ADCmin ± SD = 0.61 ± 0.13 × 10-3 mm2/s) (p < 0.005, respectively). In addition, SUVmax was significantly lower in GBMs (mean ± SD = 13.1 ± 6.34) than in PCNSLs (mean ± SD = 22.5 ± 7.83) (p < 0.005). The AUC for aTBF (0.888) was higher than those for rTBF (0.810), ADCmin (0.768), and SUVmax (0.848), although their difference was not statistically significant. Conclusion: ASL perfusion imaging is useful for differentiating PCNSLs from GBMs as well as DWI and FDG-PET.",
author = "Koji Yamashita and Takashi Yoshiura and Akio Hiwatashi and Osamu Togao and Koji Yoshimoto and Suzuki, {Satoshi O.} and Koichiro Abe and Kazufumi Kikuchi and Yasuhiro Maruoka and Masahiro Mizoguchi and Toru Iwaki and Hiroshi Honda",
year = "2013",
month = "2",
day = "1",
doi = "10.1007/s00234-012-1089-6",
language = "English",
volume = "55",
pages = "135--143",
journal = "Neuroradiology",
issn = "0028-3940",
publisher = "Springer Verlag",
number = "2",

}

TY - JOUR

T1 - Differentiating primary CNS lymphoma from glioblastoma multiforme

T2 - Assessment using arterial spin labeling, diffusion-weighted imaging, and 18F-fluorodeoxyglucose positron emission tomography

AU - Yamashita, Koji

AU - Yoshiura, Takashi

AU - Hiwatashi, Akio

AU - Togao, Osamu

AU - Yoshimoto, Koji

AU - Suzuki, Satoshi O.

AU - Abe, Koichiro

AU - Kikuchi, Kazufumi

AU - Maruoka, Yasuhiro

AU - Mizoguchi, Masahiro

AU - Iwaki, Toru

AU - Honda, Hiroshi

PY - 2013/2/1

Y1 - 2013/2/1

N2 - Introduction: Our purpose was to evaluate the diagnostic performance of arterial spin labeling (ASL) perfusion imaging, diffusion-weighted imaging (DWI), and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) in differentiating primary central nervous system lymphomas (PCNSLs) from glioblastoma multiformes (GBMs). Methods: Fifty-six patients including 19 with PCNSL and 37 with GBM were retrospectively studied. From the ASL data, an absolute tumor blood flow (aTBF) and a relative tumor blood flow (rTBF) were obtained within the enhancing portion of each tumor. In addition, the minimum apparent diffusion coefficient (ADCmin) and the maximum standard uptake value (SUVmax) were obtained from DWI and FDG-PET data, respectively. Each of the four parameters was compared between PCNSLs and GBMs using Kruskal-Wallis test. The performance in discriminating between PCNSLs and GBMs was evaluated using the receiver-operating characteristics analysis. Area-under-the-curve (AUC) values were compared among the four parameters using a nonparametric method. Results: The aTBF, rTBF, and ADCmin were significantly higher in GBMs (mean aTBF ± SD = 91.6 ± 56.0 mL/100 g/min, mean rTBF ± SD = 2.61 ± 1.61, mean ADCmin ± SD = 0.78 ± 0.19 × 10-3 mm2/s) than in PCNSLs (mean aTBF ± SD = 37.3 ± 10.5 mL/100 g/min, mean rTBF ± SD = 1.24 ± 0.37, mean ADCmin ± SD = 0.61 ± 0.13 × 10-3 mm2/s) (p < 0.005, respectively). In addition, SUVmax was significantly lower in GBMs (mean ± SD = 13.1 ± 6.34) than in PCNSLs (mean ± SD = 22.5 ± 7.83) (p < 0.005). The AUC for aTBF (0.888) was higher than those for rTBF (0.810), ADCmin (0.768), and SUVmax (0.848), although their difference was not statistically significant. Conclusion: ASL perfusion imaging is useful for differentiating PCNSLs from GBMs as well as DWI and FDG-PET.

AB - Introduction: Our purpose was to evaluate the diagnostic performance of arterial spin labeling (ASL) perfusion imaging, diffusion-weighted imaging (DWI), and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) in differentiating primary central nervous system lymphomas (PCNSLs) from glioblastoma multiformes (GBMs). Methods: Fifty-six patients including 19 with PCNSL and 37 with GBM were retrospectively studied. From the ASL data, an absolute tumor blood flow (aTBF) and a relative tumor blood flow (rTBF) were obtained within the enhancing portion of each tumor. In addition, the minimum apparent diffusion coefficient (ADCmin) and the maximum standard uptake value (SUVmax) were obtained from DWI and FDG-PET data, respectively. Each of the four parameters was compared between PCNSLs and GBMs using Kruskal-Wallis test. The performance in discriminating between PCNSLs and GBMs was evaluated using the receiver-operating characteristics analysis. Area-under-the-curve (AUC) values were compared among the four parameters using a nonparametric method. Results: The aTBF, rTBF, and ADCmin were significantly higher in GBMs (mean aTBF ± SD = 91.6 ± 56.0 mL/100 g/min, mean rTBF ± SD = 2.61 ± 1.61, mean ADCmin ± SD = 0.78 ± 0.19 × 10-3 mm2/s) than in PCNSLs (mean aTBF ± SD = 37.3 ± 10.5 mL/100 g/min, mean rTBF ± SD = 1.24 ± 0.37, mean ADCmin ± SD = 0.61 ± 0.13 × 10-3 mm2/s) (p < 0.005, respectively). In addition, SUVmax was significantly lower in GBMs (mean ± SD = 13.1 ± 6.34) than in PCNSLs (mean ± SD = 22.5 ± 7.83) (p < 0.005). The AUC for aTBF (0.888) was higher than those for rTBF (0.810), ADCmin (0.768), and SUVmax (0.848), although their difference was not statistically significant. Conclusion: ASL perfusion imaging is useful for differentiating PCNSLs from GBMs as well as DWI and FDG-PET.

UR - http://www.scopus.com/inward/record.url?scp=84873741459&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84873741459&partnerID=8YFLogxK

U2 - 10.1007/s00234-012-1089-6

DO - 10.1007/s00234-012-1089-6

M3 - Article

C2 - 22961074

AN - SCOPUS:84873741459

VL - 55

SP - 135

EP - 143

JO - Neuroradiology

JF - Neuroradiology

SN - 0028-3940

IS - 2

ER -