Differentiation of high-grade and low-grade diffuse gliomas by intravoxel incoherent motion MR imaging

Osamu Togao, Akio Hiwatashi, Koji Yamashita, Kazufumi Kikuchi, Masahiro Mizoguchi, Koji Yoshimoto, Satoshi O. Suzuki, Toru Iwaki, Makoto Obara, Marc Van Cauteren, Hiroshi Honda

研究成果: ジャーナルへの寄稿記事

43 引用 (Scopus)

抄録

Background Our aim was to assess the diagnostic performance of intravoxel incoherent motion (IVIM) MR imaging for differentiating high-grade gliomas (HGGs) from low-grade gliomas (LGGs). Methods Forty-five patients with diffuse glioma (age 50.9 ± 20.4 y; 26 males, 19 females) were assessed with IVIM imaging using 13 b-values (0-1000 s/mm2) at 3T. The perfusion fraction (f), true diffusion coefficient (D), and pseudo-diffusion coefficient (D∗) were calculated by fitting the bi-exponential model. The apparent diffusion coefficient (ADC) was obtained with 2 b-values (0 and 1000 s/mm2). Relative cerebral blood volume was measured by the dynamic susceptibility contrast method. Two observers independently measured D, ADC, D∗, and f, and these measurements were compared between the LGG group (n = 16) and the HGG group (n = 29). Results Both D (1.26 ± 0.37 mm2/s in LGG, 0.94 ± 0.19 mm2/s in HGG; P <. 001) and ADC (1.28 ± 0.35 mm2/s in LGG, 1.03 ± 0.19 mm2/s in HGG; P <. 01) were lower in the HGG group. D was lower than ADC in the LGG (P <. 05) and HGG groups (P <. 0001). D∗ was not different between the groups. The f-values were significantly larger in HGG (17.5 ± 6.3%) than in LGG (5.8 ± 3.8%; P <. 0001) and correlated with relative cerebral blood volume (r = 0.85; P <. 0001). Receiver operating characteristic analyses showed areas under curve of 0.95 with f, 0.78 with D, 0.73 with ADC, and 0.60 with D∗. Conclusion IVIM imaging is useful in differentiating HGGs from LGGs.

元の言語英語
ページ(範囲)132-141
ページ数10
ジャーナルNeuro-Oncology
18
発行部数1
DOI
出版物ステータス出版済み - 1 1 2016

Fingerprint

Glioma
ROC Curve
Area Under Curve
Perfusion

All Science Journal Classification (ASJC) codes

  • Oncology
  • Clinical Neurology
  • Cancer Research

これを引用

Differentiation of high-grade and low-grade diffuse gliomas by intravoxel incoherent motion MR imaging. / Togao, Osamu; Hiwatashi, Akio; Yamashita, Koji; Kikuchi, Kazufumi; Mizoguchi, Masahiro; Yoshimoto, Koji; Suzuki, Satoshi O.; Iwaki, Toru; Obara, Makoto; Van Cauteren, Marc; Honda, Hiroshi.

:: Neuro-Oncology, 巻 18, 番号 1, 01.01.2016, p. 132-141.

研究成果: ジャーナルへの寄稿記事

@article{b10bc1cbbaba474ca5fdfe6ee796805d,
title = "Differentiation of high-grade and low-grade diffuse gliomas by intravoxel incoherent motion MR imaging",
abstract = "Background Our aim was to assess the diagnostic performance of intravoxel incoherent motion (IVIM) MR imaging for differentiating high-grade gliomas (HGGs) from low-grade gliomas (LGGs). Methods Forty-five patients with diffuse glioma (age 50.9 ± 20.4 y; 26 males, 19 females) were assessed with IVIM imaging using 13 b-values (0-1000 s/mm2) at 3T. The perfusion fraction (f), true diffusion coefficient (D), and pseudo-diffusion coefficient (D∗) were calculated by fitting the bi-exponential model. The apparent diffusion coefficient (ADC) was obtained with 2 b-values (0 and 1000 s/mm2). Relative cerebral blood volume was measured by the dynamic susceptibility contrast method. Two observers independently measured D, ADC, D∗, and f, and these measurements were compared between the LGG group (n = 16) and the HGG group (n = 29). Results Both D (1.26 ± 0.37 mm2/s in LGG, 0.94 ± 0.19 mm2/s in HGG; P <. 001) and ADC (1.28 ± 0.35 mm2/s in LGG, 1.03 ± 0.19 mm2/s in HGG; P <. 01) were lower in the HGG group. D was lower than ADC in the LGG (P <. 05) and HGG groups (P <. 0001). D∗ was not different between the groups. The f-values were significantly larger in HGG (17.5 ± 6.3{\%}) than in LGG (5.8 ± 3.8{\%}; P <. 0001) and correlated with relative cerebral blood volume (r = 0.85; P <. 0001). Receiver operating characteristic analyses showed areas under curve of 0.95 with f, 0.78 with D, 0.73 with ADC, and 0.60 with D∗. Conclusion IVIM imaging is useful in differentiating HGGs from LGGs.",
author = "Osamu Togao and Akio Hiwatashi and Koji Yamashita and Kazufumi Kikuchi and Masahiro Mizoguchi and Koji Yoshimoto and Suzuki, {Satoshi O.} and Toru Iwaki and Makoto Obara and {Van Cauteren}, Marc and Hiroshi Honda",
year = "2016",
month = "1",
day = "1",
doi = "10.1093/neuonc/nov147",
language = "English",
volume = "18",
pages = "132--141",
journal = "Neuro-Oncology",
issn = "1522-8517",
publisher = "Oxford University Press",
number = "1",

}

TY - JOUR

T1 - Differentiation of high-grade and low-grade diffuse gliomas by intravoxel incoherent motion MR imaging

AU - Togao, Osamu

AU - Hiwatashi, Akio

AU - Yamashita, Koji

AU - Kikuchi, Kazufumi

AU - Mizoguchi, Masahiro

AU - Yoshimoto, Koji

AU - Suzuki, Satoshi O.

AU - Iwaki, Toru

AU - Obara, Makoto

AU - Van Cauteren, Marc

AU - Honda, Hiroshi

PY - 2016/1/1

Y1 - 2016/1/1

N2 - Background Our aim was to assess the diagnostic performance of intravoxel incoherent motion (IVIM) MR imaging for differentiating high-grade gliomas (HGGs) from low-grade gliomas (LGGs). Methods Forty-five patients with diffuse glioma (age 50.9 ± 20.4 y; 26 males, 19 females) were assessed with IVIM imaging using 13 b-values (0-1000 s/mm2) at 3T. The perfusion fraction (f), true diffusion coefficient (D), and pseudo-diffusion coefficient (D∗) were calculated by fitting the bi-exponential model. The apparent diffusion coefficient (ADC) was obtained with 2 b-values (0 and 1000 s/mm2). Relative cerebral blood volume was measured by the dynamic susceptibility contrast method. Two observers independently measured D, ADC, D∗, and f, and these measurements were compared between the LGG group (n = 16) and the HGG group (n = 29). Results Both D (1.26 ± 0.37 mm2/s in LGG, 0.94 ± 0.19 mm2/s in HGG; P <. 001) and ADC (1.28 ± 0.35 mm2/s in LGG, 1.03 ± 0.19 mm2/s in HGG; P <. 01) were lower in the HGG group. D was lower than ADC in the LGG (P <. 05) and HGG groups (P <. 0001). D∗ was not different between the groups. The f-values were significantly larger in HGG (17.5 ± 6.3%) than in LGG (5.8 ± 3.8%; P <. 0001) and correlated with relative cerebral blood volume (r = 0.85; P <. 0001). Receiver operating characteristic analyses showed areas under curve of 0.95 with f, 0.78 with D, 0.73 with ADC, and 0.60 with D∗. Conclusion IVIM imaging is useful in differentiating HGGs from LGGs.

AB - Background Our aim was to assess the diagnostic performance of intravoxel incoherent motion (IVIM) MR imaging for differentiating high-grade gliomas (HGGs) from low-grade gliomas (LGGs). Methods Forty-five patients with diffuse glioma (age 50.9 ± 20.4 y; 26 males, 19 females) were assessed with IVIM imaging using 13 b-values (0-1000 s/mm2) at 3T. The perfusion fraction (f), true diffusion coefficient (D), and pseudo-diffusion coefficient (D∗) were calculated by fitting the bi-exponential model. The apparent diffusion coefficient (ADC) was obtained with 2 b-values (0 and 1000 s/mm2). Relative cerebral blood volume was measured by the dynamic susceptibility contrast method. Two observers independently measured D, ADC, D∗, and f, and these measurements were compared between the LGG group (n = 16) and the HGG group (n = 29). Results Both D (1.26 ± 0.37 mm2/s in LGG, 0.94 ± 0.19 mm2/s in HGG; P <. 001) and ADC (1.28 ± 0.35 mm2/s in LGG, 1.03 ± 0.19 mm2/s in HGG; P <. 01) were lower in the HGG group. D was lower than ADC in the LGG (P <. 05) and HGG groups (P <. 0001). D∗ was not different between the groups. The f-values were significantly larger in HGG (17.5 ± 6.3%) than in LGG (5.8 ± 3.8%; P <. 0001) and correlated with relative cerebral blood volume (r = 0.85; P <. 0001). Receiver operating characteristic analyses showed areas under curve of 0.95 with f, 0.78 with D, 0.73 with ADC, and 0.60 with D∗. Conclusion IVIM imaging is useful in differentiating HGGs from LGGs.

UR - http://www.scopus.com/inward/record.url?scp=84960350413&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84960350413&partnerID=8YFLogxK

U2 - 10.1093/neuonc/nov147

DO - 10.1093/neuonc/nov147

M3 - Article

C2 - 26243792

AN - SCOPUS:84960350413

VL - 18

SP - 132

EP - 141

JO - Neuro-Oncology

JF - Neuro-Oncology

SN - 1522-8517

IS - 1

ER -