TY - JOUR
T1 - Dimerization and double proton transfer-induced tautomerism of 4(3H)-pyrimidinone in solution studied by IR spectroscopy and quantum chemical calculations
AU - Padermshoke, Adchara
AU - Katsumoto, Yukiteru
AU - Aida, Misako
PY - 2006/12/28
Y1 - 2006/12/28
N2 - The tautomerism and dimerization of 4(3H)-pyrimidinone (4(3H)Pyr) in carbon tetrachloride (CCl4) and chloroform (CHCl3) solutions were investigated using IR spectroscopy and quantum chemical calculations. The observed IR spectra in the NH and OH stretching regions clearly revealed the predominance of the keto tautomer in both solvent systems. The enol form only exists in a very small proportion in the CCl4 solution. The tautomeric constant for the two monomers KT[OH/NH] = 0.012 and ΔE = 2.62 kcal/mol were estimated at 25°C. This result was supported by the self-consistent reaction field/polarizable continuum (SCRF/PCM) calculation at the MP4(full, SDQ)/aug-cc-pVDZ level, which predicted ΔE = 3.06 kcal/mol in CCl4- In the C=O stretching region, two bands were observed, suggesting the coexistence of two keto structures at equilibrium. The calculated IR spectra indicated that the bands at 1711 and 1675 cm-1 arise from the keto monomer and keto-keto (KK) ring dimer, respectively. At elevated temperature, the populations of both the keto and enol monomers increased for the CCl4 solution. The present study revealed that the keto ↔ enol tautomerization does not occur in the isolated monomer molecule. The double proton transfer (DPT) reaction in the KK ring dimer presumably plays a substantial role in the population increase of the enol monomer. To our knowledge, this may be the first observation of the tautomerization in a model base pair via the temperatureinduced ground-state DPT reaction under a nonpolar liquid environment reported so far. This tautomerism can serve as a mimic circumstance for the spontaneous mutations induced by proton transfer in the DNA base pairs.
AB - The tautomerism and dimerization of 4(3H)-pyrimidinone (4(3H)Pyr) in carbon tetrachloride (CCl4) and chloroform (CHCl3) solutions were investigated using IR spectroscopy and quantum chemical calculations. The observed IR spectra in the NH and OH stretching regions clearly revealed the predominance of the keto tautomer in both solvent systems. The enol form only exists in a very small proportion in the CCl4 solution. The tautomeric constant for the two monomers KT[OH/NH] = 0.012 and ΔE = 2.62 kcal/mol were estimated at 25°C. This result was supported by the self-consistent reaction field/polarizable continuum (SCRF/PCM) calculation at the MP4(full, SDQ)/aug-cc-pVDZ level, which predicted ΔE = 3.06 kcal/mol in CCl4- In the C=O stretching region, two bands were observed, suggesting the coexistence of two keto structures at equilibrium. The calculated IR spectra indicated that the bands at 1711 and 1675 cm-1 arise from the keto monomer and keto-keto (KK) ring dimer, respectively. At elevated temperature, the populations of both the keto and enol monomers increased for the CCl4 solution. The present study revealed that the keto ↔ enol tautomerization does not occur in the isolated monomer molecule. The double proton transfer (DPT) reaction in the KK ring dimer presumably plays a substantial role in the population increase of the enol monomer. To our knowledge, this may be the first observation of the tautomerization in a model base pair via the temperatureinduced ground-state DPT reaction under a nonpolar liquid environment reported so far. This tautomerism can serve as a mimic circumstance for the spontaneous mutations induced by proton transfer in the DNA base pairs.
UR - http://www.scopus.com/inward/record.url?scp=84962339743&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84962339743&partnerID=8YFLogxK
U2 - 10.1021/jp065408i
DO - 10.1021/jp065408i
M3 - Article
AN - SCOPUS:84962339743
VL - 110
SP - 26388
EP - 26395
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
SN - 1520-6106
IS - 51
ER -