Discovery of tree structured patterns using Markov chain Monte Carlo method

Yasuhiro Okamoto, Kensuke Koyanagi, Takayoshi Shoudai, Osamu Maruyama

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

抄録

A tree contraction pattern (TC-pattern) is an unordered tree-structured pattern which can express a tree-structure common to given unordered trees. A TC-pattern has some special vertices, called contractible vertex, into which every uncommon connected substructure is merged by edge contractions. In this paper, we propose a probabilistic method for computing a binary classification problem on tree-structured data. Given a positive set P and a negative set N of unordered trees with vertex labels on a finite alphabet, the problem is to find meaningful and optimal TC-patterns that classify P and N with high statistical measures. We formalize this problem as a multiple optimization problem, and propose a probabilistic method for computing it by employing enumeration algorithms for TC-patterns and Markov chain Monte Carlo method. In addition, as a theoretical aspect of this problem, we show the hardness of approximability of it. Finally, we show the experimental results of our method on glycan structure data.

本文言語英語
ホスト出版物のタイトルProceedings of the 7th IADIS International Conference Information Systems 2014, IS 2014
出版社IADIS
ページ95-102
ページ数8
ISBN(電子版)9789898704047
出版ステータス出版済み - 1 1 2014
イベント7th IADIS International Conference on Information Systems, IS 2014 - Madrid, スペイン
継続期間: 2 28 20143 2 2014

その他

その他7th IADIS International Conference on Information Systems, IS 2014
Countryスペイン
CityMadrid
Period2/28/143/2/14

All Science Journal Classification (ASJC) codes

  • Hardware and Architecture
  • Information Systems
  • Software
  • Computer Science Applications

フィンガープリント 「Discovery of tree structured patterns using Markov chain Monte Carlo method」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル