Discrete-to-continuum limits of planar disclinations

Pierluigi Cesana, Patrick Van Meurs

研究成果: Contribution to journalArticle査読

抄録

In materials science, wedge disclinations are defects caused by angular mismatches in the crystallographic lattice. To describe such disclinations, we introduce an atomistic model in planar domains. This model is given by a nearest-neighbor-type energy for the atomic bonds with an additional term to penalize change in volume. We enforce the appearance of disclinations by means of a special boundary condition. Our main result is the discrete-to-continuum limit of this energy as the lattice size tends to zero. Our proof relies on energy relaxation methods. The main mathematical novelty of our proof is a density theorem for the special boundary condition. In addition to our limit theorem, we construct examples of planar disclinations as solutions to numerical minimization of the model and show that classical results for wedge disclinations are recovered by our analysis.

本文言語英語
論文番号2021025
ジャーナルESAIM - Control, Optimisation and Calculus of Variations
27
DOI
出版ステータス出版済み - 2021

All Science Journal Classification (ASJC) codes

  • 制御およびシステム工学
  • 制御と最適化
  • 計算数学

フィンガープリント

「Discrete-to-continuum limits of planar disclinations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル