Disruption of NF-κB1 prevents bone loss caused by mechanical unloading

Hitomi Nakamura, Kazuhiro Aoki, Wataru Masuda, Neil Alles, Kenichi Nagano, Hidefumi Fukushima, Kenji Osawa, Hisataka Yasuda, Ichiro Nakamura, Yuko Mikuni-Takagaki, Keiichi Ohya, Kenshi Maki, Eijiro Jimi

研究成果: Contribution to journalArticle査読

25 被引用数 (Scopus)

抄録

Mechanical unloading, such as in a microgravity environment in space or during bed rest (for patients who require prolonged bed rest), leads to a decrease in bone mass because of the suppression of bone formation and the stimulation of bone resorption. To address the challenges presented by a prolonged stay in space and the forthcoming era of a super-aged society, it will be important to prevent the bone loss caused by prolonged mechanical unloading. Nuclear factor κB (NF-κB) transcription factors are activated by mechanical loading and inflammatory cytokines. Our objective was to elucidate the role of NF-κB pathways in bone loss that are caused by mechanical unloading. Eight-week-old wild-type (WT) and NF-κB1-deficient mice were randomly assigned to a control or mechanically unloaded with tail suspension group. After 2 weeks, a radiographic analysis indicated a decrease in bone mass in the tibias and femurs of the unloaded WT mice but not in the NF-κB1-deficient mice. An NF-κB1 deficiency suppressed the unloading-induced reduction in bone formation by maintaining the proportion and/or potential of osteoprogenitors or immature osteoblasts, and by suppression of bone resorption through the inhibition of intracellular signaling through the receptor activator of NF-κB ligand (RANKL) in osteoclast precursors. Thus, NF-κB1 is involved in two aspects of rapid reduction in bone mass that are induced by disuse osteoporosis in space or bed rest.

本文言語英語
ページ(範囲)1457-1467
ページ数11
ジャーナルJournal of Bone and Mineral Research
28
6
DOI
出版ステータス出版済み - 6 2013
外部発表はい

All Science Journal Classification (ASJC) codes

  • 内分泌学、糖尿病および代謝内科学
  • 整形外科およびスポーツ医学

フィンガープリント

「Disruption of NF-κB1 prevents bone loss caused by mechanical unloading」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル