Distance k-sectors exist

Keiko Imai, Akitoshi Kawamura, Jiří Matoušek, Daniel Reem, Takeshi Tokuyama

研究成果: Contribution to journalArticle査読

7 被引用数 (Scopus)

抄録

The bisector of two nonempty sets P and Q in Rd is the set of all points with equal distance to P and to Q. A distance k-sector of P and Q, where k≥2 is an integer, is a (k-1)-tuple (C1,C2,...,Ck-1) such that Ci is the bisector of Ci-1 and Ci+1 for every i=1,2,...,k-1, where C0=P and Ck=Q. This notion, for the case where P and Q are points in R2, was introduced by Asano, Matoušek, and Tokuyama, motivated by a question of Murata in VLSI design. They established the existence and uniqueness of the distance 3-sector in this special case. We prove the existence of a distance k-sector for all k and for every two disjoint, nonempty, closed sets P and Q in Euclidean spaces of any (finite) dimension (uniqueness remains open), or more generally, in proper geodesic spaces. The core of the proof is a new notion of k-gradation for P and Q, whose existence (even in an arbitrary metric space) is proved using the Knaster-Tarski fixed point theorem, by a method introduced by Reem and Reich for a slightly different purpose.

本文言語英語
ページ(範囲)713-720
ページ数8
ジャーナルComputational Geometry: Theory and Applications
43
9
DOI
出版ステータス出版済み - 11 2010
外部発表はい

All Science Journal Classification (ASJC) codes

  • コンピュータ サイエンスの応用
  • 幾何学とトポロジー
  • 制御と最適化
  • 計算理論と計算数学
  • 計算数学

フィンガープリント

「Distance k-sectors exist」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル