Distances defined by neighborhood sequences

Masafumi Yamashita, Toshihide Ibaraki

研究成果: ジャーナルへの寄稿学術誌査読

34 被引用数 (Scopus)

抄録

This paper investigates general properties of distance functions defined over digitized space. We assume that a distance between two points is defined as the length of a shortest path connecting them in the underlying graph which is defined by a given neighborhood sequence. Many typical distance functions can be described in this form, but there are cases in which given neighborhood sequence do not define distance functions. We first derive a necessary and sufficient condition for a neighborhood sequence to define a distance function. We then discuss another important problem of estimating how tight such distances can approximate the Euclid distance from the view point of relative error and absolute error.

本文言語英語
ページ(範囲)237-246
ページ数10
ジャーナルPattern Recognition
19
3
DOI
出版ステータス出版済み - 1986

!!!All Science Journal Classification (ASJC) codes

  • ソフトウェア
  • 信号処理
  • コンピュータ ビジョンおよびパターン認識
  • 人工知能

フィンガープリント

「Distances defined by neighborhood sequences」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル