抄録
A fast and memory-efficient method has been created for the dynamic mean shift (DMS) algorithm, which is an iterative mode-seeking algorithm. Running the standard DMS algorithm requires a large amount of memory because the algorithm dynamically updates all data during iterations. Therefore, it is difficult to use a conventional DMS algorithm for clustering large dataset. This difficulty is overcome by partitioning a dataset into subsets, and the resultant procedure is called a "distributed DMS algorithm", Experimental results on image segmentation show that the distributed DMS algorithm requires less memory than that of the conventionally used DMS algorithm.
本文言語 | 英語 |
---|---|
ページ(範囲) | 1614-1620 |
ページ数 | 7 |
ジャーナル | Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers |
巻 | 61 |
号 | 11 |
DOI | |
出版ステータス | 出版済み - 11月 2007 |
!!!All Science Journal Classification (ASJC) codes
- メディア記述
- コンピュータ サイエンスの応用
- 電子工学および電気工学