Distributed dynamic mean shift algorithm for image segmentation

Kohei Inoue, Kiichi Urahama

    研究成果: ジャーナルへの寄稿学術誌査読

    抄録

    A fast and memory-efficient method has been created for the dynamic mean shift (DMS) algorithm, which is an iterative mode-seeking algorithm. Running the standard DMS algorithm requires a large amount of memory because the algorithm dynamically updates all data during iterations. Therefore, it is difficult to use a conventional DMS algorithm for clustering large dataset. This difficulty is overcome by partitioning a dataset into subsets, and the resultant procedure is called a "distributed DMS algorithm", Experimental results on image segmentation show that the distributed DMS algorithm requires less memory than that of the conventionally used DMS algorithm.

    本文言語英語
    ページ(範囲)1614-1620
    ページ数7
    ジャーナルKyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers
    61
    11
    DOI
    出版ステータス出版済み - 11月 2007

    !!!All Science Journal Classification (ASJC) codes

    • メディア記述
    • コンピュータ サイエンスの応用
    • 電子工学および電気工学

    フィンガープリント

    「Distributed dynamic mean shift algorithm for image segmentation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル