Does metabolism of (S)-N-[1-(3-Morpholin-4-ylphenyl)ethyl]-3- phenylacrylamide occur at the morpholine ring? Quantum mechanical and molecular dynamics studies

Abdul Rajjak Shaikh, Carlos A. Del Carpio, Hideyuki Tsuboi, Michihisa Koyama, Nozomu Hatakeyama, Akira Endou, Hiromitsu Takaba, Momoji Kubo, Ewa Broclawik, Akira Miyamoto

    研究成果: Contribution to journalArticle査読

    2 被引用数 (Scopus)


    The mechanism of Cytochrome P450 3A4 mediated metabolism of (S)-N-[1-(3-morpholin-4ylphenyl)ethyl]-3-phenylacrylamide and its difluoro analogue have been investigated by density functional QM calculations aided with molecular mechanics/molecular dynamics simulations. In this article, we mainly focus on the metabolism of the morpholine ring of substrates 1 and 2. The reaction proceeds via a hydrogen atom abstraction from the morpholine ring by Compound I on a doublet potential energy surface. A transition state was observed at an O-H distance of 1.46 Å for 1 while 1.38 Å for 2. Transition state for the rebound mechanism was not observed. The energy barrier for the hydrogen atom abstraction from 1 was found to be 7.01 kcal/mol in gas phase while 19.53 kcal/mol when the protein environment was emulated by COSMO. Similarly the energy barrier for substrate 2 was found to be 11.07 kcal/mol in gas phase while it was reduced to 12.99 kcal/mol in protein environment. Our previous study reported energy barriers for phenyl hydroxylation of 7.4 kcal/mol. Large energy barriers for morpholine hydroxylation indicates that hydroxylation at the phenyl ring may be preferred over morpholine. MD simulations in protein environment indicated that hydrogen atom at C4 position of phenyl ring remains in closer proximity to oxyferryl oxygen of the heme moiety as compared to morpholine hydrogen and hence greater chance to metabolize at phenyl ring.

    ジャーナルMaterials Transactions
    出版ステータス出版済み - 4 1 2007

    All Science Journal Classification (ASJC) codes

    • Materials Science(all)
    • Condensed Matter Physics
    • Mechanics of Materials
    • Mechanical Engineering

    フィンガープリント 「Does metabolism of (S)-N-[1-(3-Morpholin-4-ylphenyl)ethyl]-3- phenylacrylamide occur at the morpholine ring? Quantum mechanical and molecular dynamics studies」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。