Double Points of Free Projective Line Arrangements

研究成果: ジャーナルへの寄稿学術誌査読

1 被引用数 (Scopus)

抄録

We prove the Anzis-Tohaneanu conjecture, that is, the Dirac-Motzkin conjecture for supersolvable line arrangements in the projective plane over an arbitrary field of characteristic zero. Moreover, we show that a divisionally free arrangements of lines contain at least one double point that can be regarded as the Sylvester-Gallai theorem for some free arrangements. This is a corollary of a general result that if you add a line to a free projective line arrangement, then that line has to contain at least one double point. Also, we prove some conjectures and one open problems related to supersolvable line arrangements and the number of double points.

本文言語英語
ページ(範囲)1811-1824
ページ数14
ジャーナルInternational Mathematics Research Notices
2022
3
DOI
出版ステータス出版済み - 2月 1 2022

!!!All Science Journal Classification (ASJC) codes

  • 数学 (全般)

フィンガープリント

「Double Points of Free Projective Line Arrangements」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル