Dual LMI approach to H∞ performance limitations analysis of SISO systems with multiple unstable zeros and poles

Yoshio Ebihara, Shogo Shintani, Tomomichi Hagiwara

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

4 被引用数 (Scopus)

抄録

In this paper, we study a dual-LMI-based approach to H∞ performance limitations analysis of SISO systems with multiple (i.e., duplicated) unstable zeros and poles. The scope includes the analysis of the transfer functions M = (1+PK)-1 P, S = (1+PK)-1, and T = (1+PK)-1 PK where P and K stand for the plant and the controller, respectively. The latter two transfer functions are well investigated, and exact closed-form performance bounds are already known for the cases where the plant has the sole unstable zero of degree one or the sole unstable pole of degree one. However, such exact bounds are hardly available for the cases where the plant has multiple (i.e., duplicated) unstable zeros and poles. To obtain a lower bound of the best achievable H∞ performance for such involved cases, in this paper, we study a dual of the standard LMI that represents the existence of H∞ controllers achieving a prescribed H∞ performance level. By deriving a parametrization of dual feasible solutions and constructing a dual suboptimal solution analytically, we can readily obtain a lower bound of the best achievable H∞ performance.

本文言語英語
ホスト出版物のタイトル2016 American Control Conference, ACC 2016
出版社Institute of Electrical and Electronics Engineers Inc.
ページ5638-5643
ページ数6
ISBN(電子版)9781467386821
DOI
出版ステータス出版済み - 7 28 2016
外部発表はい
イベント2016 American Control Conference, ACC 2016 - Boston, 米国
継続期間: 7 6 20167 8 2016

出版物シリーズ

名前Proceedings of the American Control Conference
2016-July
ISSN(印刷版)0743-1619

会議

会議2016 American Control Conference, ACC 2016
国/地域米国
CityBoston
Period7/6/167/8/16

All Science Journal Classification (ASJC) codes

  • 電子工学および電気工学

フィンガープリント

「Dual LMI approach to H∞ performance limitations analysis of SISO systems with multiple unstable zeros and poles」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル