Dynamic force spectroscopy of the specific interaction between the PDZ domain and its recognition peptides

Tei Maki, Satoru Kidoaki, Kengo Usui, Harukazu Suzuki, Masayoshi Ito, Fuyu Ito, Yoshihide Hayashizaki, Takehisa Matsuda

研究成果: Contribution to journalArticle査読

21 被引用数 (Scopus)


To characterize the molecular basis of specific interactions of PDZ proteins, dynamic force spectroscopy (DFS) for the PDZ protein Tax-interacting protein-1 (TIP-1) and its recognition peptide (PDZ-pep) derived from β-catenin was performed using an atomic force microscope (AFM), together with measurement of thermodynamic and kinetic parameters using surface plasmon resonance (SPR). The unbinding force of this pair was measured under different conditions of AFM tip-retraction velocity. The relationship between the unbinding force and the logarithmic force-loading rate, that is, the dynamic force spectrum, exhibited two different rate regimes, for each of which the forces increased linearly with the force-loading rate. On the basis of the theoretical treatment of the Bell-Evans model, the positions of two different activation barriers in the reaction coordinate and dissociation rate constants in each barrier were evaluated from slopes and x-intercepts of the two linear regimes (first barrier: 0.04 nm and 1.10 × 10s-1; second barrier: 0.21 nm and 2.77 × 10-2 s-1, respectively). Although two-step unbinding kinetics between TIP-1 and PDZ-pep was suggested from the DFS analysis, SPR results showed single-step dissociation kinetics with a rate constant of 2.89 × 10-1 s-1. Different shapes of the free energy profile of the unbinding process were deduced from each result of DFS and SPR. The reason for such topographic differences in the energy landscape is discussed in relation to the differences in the pathways of forced unbinding and spontaneous dissociation.

出版ステータス出版済み - 2 27 2007

All Science Journal Classification (ASJC) codes

  • 材料科学(全般)
  • 凝縮系物理学
  • 表面および界面
  • 分光学
  • 電気化学


「Dynamic force spectroscopy of the specific interaction between the PDZ domain and its recognition peptides」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。