Dynamic index and LZ factorization in compressed space

Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda

研究成果: Contribution to journalArticle査読

8 被引用数 (Scopus)

抄録

In this paper, we propose a new dynamic compressed index of O(w) space for a dynamic text T, where w=O(min(zlogNlogM,N)) is the size of the signature encoding of T, z is the size of the Lempel–Ziv77 (LZ77) factorization of T, N is the length of T, and M≥N is the maximum length of T. Our index supports searching for a pattern P in T in O(|P|fA+logwlog|P|logM(logN+log|P|logM)+occlogN) time and insertion/deletion of a substring of length y in O((y+logNlogM)logwlogNlogM) time, where occ is the number of occurrences of P in T and [Formula presented]. Also, we propose a new space-efficient LZ77 factorization algorithm for a given text T, which runs in O(NfA+zlogwlog3N(logN)2) time with O(w) working space.

本文言語英語
ページ(範囲)116-129
ページ数14
ジャーナルDiscrete Applied Mathematics
274
DOI
出版ステータス出版済み - 3 15 2020

All Science Journal Classification (ASJC) codes

  • 離散数学と組合せ数学
  • 応用数学

フィンガープリント

「Dynamic index and LZ factorization in compressed space」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル