Dynamic mode decomposition via dictionary learning for foreground modeling in videos

Israr Ul Haq, Keisuke Fujii, Yoshinobu Kawahara

研究成果: 書籍/レポート タイプへの寄稿会議への寄与

1 被引用数 (Scopus)

抄録

Accurate extraction of foregrounds in videos is one of the challenging problems in computer vision. In this study, we propose dynamic mode decomposition via dictionary learning (dl-DMD), which is applied to extract moving objects by separating the sequence of video frames into foreground and background information with a dictionary learned using block patches on the video frames. Dynamic mode decomposition (DMD) decomposes spatiotemporal data into spatial modes, each of whose temporal behavior is characterized by a single frequency and growth/decay rate and is applicable to split a video into foregrounds and the background when applying it to a video. And, in dl-DMD, DMD is applied on coefficient matrices estimated over a learned dictionary, which enables accurate estimation of dynamical information in videos. Due to this scheme, dl-DMD can analyze the dynamics of respective regions in a video based on estimated amplitudes and temporal evolution over patches. The results on synthetic data exhibit that dl-DMD outperforms the standard DMD and compressed DMD (cDMD) based methods. Also, the results of an empirical performance evaluation in the case of foreground extraction from videos using publicly available dataset demonstrates the effectiveness of the proposed dl-DMD algorithm and achieves a performance that is comparable to that of the state-of-the-art techniques in foreground extraction tasks.

本文言語英語
ホスト出版物のタイトルVISAPP
編集者Giovanni Maria Farinella, Petia Radeva, Jose Braz
出版社SciTePress
ページ476-483
ページ数8
ISBN(電子版)9789897584022
出版ステータス出版済み - 2020
イベント15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2020 - Valletta, マルタ
継続期間: 2月 27 20202月 29 2020

出版物シリーズ

名前VISIGRAPP 2020 - Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
5

会議

会議15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2020
国/地域マルタ
CityValletta
Period2/27/202/29/20

!!!All Science Journal Classification (ASJC) codes

  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • コンピュータ サイエンスの応用
  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「Dynamic mode decomposition via dictionary learning for foreground modeling in videos」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル