Dynamic Self-dual DeepBKZ Lattice Reduction with Free Dimensions

Satoshi Nakamura, Yasuhiko Ikematsu, Masaya Yasuda

研究成果: Chapter in Book/Report/Conference proceedingConference contribution

1 被引用数 (Scopus)

抄録

Lattice basis reduction is a mandatory tool to solve lattice problems such as the shortest vector problem (SVP), whose hardness assures the security of lattice-based cryptography. The most famous reduction is the celebrated algorithm by Lenstra-Lenstra–Lovász (LLL), and the block Korkine–Zolotarev (BKZ) is its blockwise generalization. At present, BKZ and its variants such as BKZ 2.0 are a de facto standard reduction algorithm to estimate the security level of lattice-based cryptosystems. Recently, DeepBKZ was proposed as a mathematical improvement of BKZ, in which LLL with deep insertions (DeepLLL) is called as a subroutine alternative to LLL. In this paper, we develop a new self-dual variant of DeepBKZ to obtain a reduced basis. Different from conventional self-dual algorithms, we select suitable free dimensions to reduce primal and dual lattice bases in our variant. We also report experimental results to compare our self-dual DeepBKZ with primal BKZ and DeepBKZ for several random lattice bases.

本文言語英語
ホスト出版物のタイトルProceedings of the Sixth International Conference on Mathematics and Computing - ICMC 2020
編集者Debasis Giri, Rajkumar Buyya, S. Ponnusamy, Debashis De, Andrew Adamatzky, Jemal H. Abawajy
出版社Springer Science and Business Media Deutschland GmbH
ページ377-391
ページ数15
ISBN(印刷版)9789811580604
DOI
出版ステータス出版済み - 2021
イベント6th International Conference on Mathematics and Computing, ICMC 2020 - Sikkim, インド
継続期間: 9 23 20209 25 2020

出版物シリーズ

名前Advances in Intelligent Systems and Computing
1262
ISSN(印刷版)2194-5357
ISSN(電子版)2194-5365

会議

会議6th International Conference on Mathematics and Computing, ICMC 2020
国/地域インド
CitySikkim
Period9/23/209/25/20

All Science Journal Classification (ASJC) codes

  • 制御およびシステム工学
  • コンピュータ サイエンス(全般)

フィンガープリント

「Dynamic Self-dual DeepBKZ Lattice Reduction with Free Dimensions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル