TY - JOUR
T1 - Early endosome motility mediates α-amylase production and cell differentiation in Aspergillus oryzae
AU - Togo, Yusuke
AU - Higuchi, Yujiro
AU - Katakura, Yoshinori
AU - Takegawa, Kaoru
N1 - Funding Information:
We are grateful to the Center for Advanced Instrumental and Educated Supports at Faculty of Agriculture and Research Support Center, Research Center for Human Disease Modeling at Graduate School of Medical Sciences, Kyushu University for technical help with fluorescence microscopy. We also thank Naoki Uozumi for technical support in qRT-PCR analysis. This study was supported by JSPS KAKENHI grant number JP16K18837 and NISR Young Investigator Research Grant (Y.H.).
Publisher Copyright:
© 2017, The Author(s).
PY - 2017/12/1
Y1 - 2017/12/1
N2 - Recent research in filamentous fungi has revealed that the motility of an endocytic organelle early endosome (EE) has a versatile role in many physiological functions. Here, to further examine the motility of EEs in the industrially important fungus Aspergillus oryzae, we visualized these organelles via the Rab5 homolog AoRab5 and identified AoHok1, a putative linker protein between an EE and a motor protein. The Aohok1 disruptant showed retarded mycelial growth and no EE motility, in addition to an apical accumulation of EEs and peroxisomes. We further demonstrated that the Aohok1 disruptant exhibited less sensitivity to osmotic and cell wall stresses. Analyses on the protein secretory pathway in ΔAohok1 cells showed that, although distribution of the endoplasmic reticulum and Golgi was not affected, formation of the apical secretory vesicle cluster Spitzenkörper was impaired, probably resulting in the observed reduction of the A. oryzae major secretory protein α-amylase. Moreover, we revealed that the transcript level of α-amylase-encoding gene amyB was significantly reduced in the Aohok1 disruptant. Furthermore, we observed perturbed conidial and sclerotial formations, indicating a defect in cell differentiation, in the Aohok1 disruptant. Collectively, our results suggest that EE motility is crucial for α-amylase production and cell differentiation in A. oryzae.
AB - Recent research in filamentous fungi has revealed that the motility of an endocytic organelle early endosome (EE) has a versatile role in many physiological functions. Here, to further examine the motility of EEs in the industrially important fungus Aspergillus oryzae, we visualized these organelles via the Rab5 homolog AoRab5 and identified AoHok1, a putative linker protein between an EE and a motor protein. The Aohok1 disruptant showed retarded mycelial growth and no EE motility, in addition to an apical accumulation of EEs and peroxisomes. We further demonstrated that the Aohok1 disruptant exhibited less sensitivity to osmotic and cell wall stresses. Analyses on the protein secretory pathway in ΔAohok1 cells showed that, although distribution of the endoplasmic reticulum and Golgi was not affected, formation of the apical secretory vesicle cluster Spitzenkörper was impaired, probably resulting in the observed reduction of the A. oryzae major secretory protein α-amylase. Moreover, we revealed that the transcript level of α-amylase-encoding gene amyB was significantly reduced in the Aohok1 disruptant. Furthermore, we observed perturbed conidial and sclerotial formations, indicating a defect in cell differentiation, in the Aohok1 disruptant. Collectively, our results suggest that EE motility is crucial for α-amylase production and cell differentiation in A. oryzae.
UR - http://www.scopus.com/inward/record.url?scp=85056631350&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85056631350&partnerID=8YFLogxK
U2 - 10.1038/s41598-017-16163-1
DO - 10.1038/s41598-017-16163-1
M3 - Article
C2 - 29150640
AN - SCOPUS:85056631350
SN - 2045-2322
VL - 7
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 15757
ER -