抄録
Ni2MnGa alloy is an intelligent material with ferromagnetic and shape memory properties. The application of the alloy films to microactuators has been proposed. The Ni-rich Ni2MnGa alloy films with a thickness of nearly 5 μm were deposited on Al2O3 substrates by a radio-frequency magnetron sputtering apparatus using a Ni52Mn24Ga24 target. They were heat-treated at 1073 K for 36 ks for homogenization and ordering. The martensitic transformation temperatures of the heat-treated films were higher than room temperature. To investigate the effect of aging time on shape memory properties, the heat-treated films were aged at 673 K for various times between 0.9 and 57.6 ks in a constrained condition. The constraint-aged films showed the two-way shape memory effect by thermal cycling. Fine precipitates with a crystal structure of L12 were observed in the constraint-films aged for a long period. As for their two-way shape memory properties, a range of transformation temperature narrowed and the amount of macroscopic shape change increased with increasing aging time.
本文言語 | 英語 |
---|---|
ページ(範囲) | 861-866 |
ページ数 | 6 |
ジャーナル | Materials Transactions |
巻 | 43 |
号 | 5 |
DOI | |
出版ステータス | 出版済み - 1月 1 2002 |
外部発表 | はい |
!!!All Science Journal Classification (ASJC) codes
- 材料科学(全般)
- 凝縮系物理学
- 材料力学
- 機械工学