Effect of displacement velocity on elastic plastic fracture toughness of SM490B carbon steel plate in 0.7 MPa hydrogen gas

Takuya Matsumoto, Hisatake Itoga, Sana Hirabayashi, Masanobu Kubota, Saburo Matsuoka

    研究成果: Contribution to journalArticle査読

    13 被引用数 (Scopus)

    抄録

    The elastic-plastic fracture toughness, JIc, of SM490B carbon steel plate was investigated in air and 0.7 MPa hydrogen gas. JIc tests were conducted in accordance with the JSME standard, JSME S001 (1981). JIc was much smaller in hydrogen at a displacement velocity of V = 2 × 10-3 mm/s (JIc = 10.0 kJ/m2) than in air at V = 2 × 10-3 mm/s (JIc = 248.6 kJ/m 2). JIc in air does not satisfy the validity requirement. In hydrogen, surprisingly, a further decrease in V did not decrease J Ic, but increased it. JIc in hydrogen at V = 2 × 10-5 mm/s was 60.9 kJ/m2. The large and small values of JIc in air and hydrogen corresponded to the fracture morphology. In air at V = 2 × 10-3 mm/s, a critical stretched zone, SZW c, was formed at the tip of the fatigue pre-crack, followed by dimples. In hydrogen at V = 2 × 10-3 mm/s, quasi-cleavage instead of SZWc and dimples were formed at the pre-crack tip. In hydrogen at V = 2 × 10-5 mm/s, SZWc was formed at the precrack tip, followed by dimples again. This elastic-plastic fracture toughness behavior was analyzed assuming HESFCG (hydrogen-enhanced successive fatigue crack growth), which is proposed by the authors to explain the acceleration of fatigue crack growth rate in the presence of hydrogen. The elastic plastic fracture toughness test shown in 0.7 MPa hydrogen gas at V = 2 × 10-3 mm/s is the same as that shown in a fatigue crack growth test in 0.7 MPa hydrogen gas at a number of cycles of n = 1 and stress ratio of R = 0; and thus JIc in 0.7 MPa hydrogen gas at V = 2 × 10 -3 mm/s is not the real elastic-plastic fracture toughness. We conclude that the real elastic-plastic fracture toughness in 0.7 MPa hydrogen gas can be determined by fracture toughness testing in 0.7 MPa hydrogen gas at V = 2 × 10-5 mm/s.

    本文言語英語
    ページ(範囲)1210-1225
    ページ数16
    ジャーナルNihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A
    79
    804
    DOI
    出版ステータス出版済み - 2013

    All Science Journal Classification (ASJC) codes

    • 材料科学(全般)
    • 材料力学
    • 機械工学

    フィンガープリント

    「Effect of displacement velocity on elastic plastic fracture toughness of SM490B carbon steel plate in 0.7 MPa hydrogen gas」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル