TY - JOUR

T1 - Effect of Large-Angle Scattering between Ions and Neutral Particles on the Density Profile at the Divertor Plate

AU - Umezaki, Daisuke

AU - Matsuura, Hideaki

N1 - Publisher Copyright:
©2021 The Japan Society of Plasma Science and Nuclear Fusion Research

PY - 2021

Y1 - 2021

N2 - The better radial transport modelling of the SOL/divertor plasmas is required to obtain quantitative agreements between experimental values and simulation results towards the proper SOL/divertor plasma prediction of the future magnetic fusion devices. Various SOL/divertor codes (e.g. SONIC, SOLPS-ITER, EDGE2D, UEDGE, EMC3-Eirene, etc.) have been developed and applied to the interpretative simulations of the present fusion devices. Above codes treats the radial transport as a diffusion model and there exists uncertainty to decide the value of the diffusion coefficients. The simulation by the SONIC has resulted in a few times larger ion flux towards the divertor plate than the experimental value observed in JT-60U possibly due to such an uncertainty of the diffusion process. To achieve the quantitative agreement between the experiments and the simulation results is indispensable to predict SOL/divertor plasma parameters of the future fusion devices. Here, radial transport was simulated by considering large-angle elastic scattering between ions and neutral particles and by applying the probability distribution function to fluid equations in the divertor plasma. It was found that the density peak and ion flux are reduced by about half.

AB - The better radial transport modelling of the SOL/divertor plasmas is required to obtain quantitative agreements between experimental values and simulation results towards the proper SOL/divertor plasma prediction of the future magnetic fusion devices. Various SOL/divertor codes (e.g. SONIC, SOLPS-ITER, EDGE2D, UEDGE, EMC3-Eirene, etc.) have been developed and applied to the interpretative simulations of the present fusion devices. Above codes treats the radial transport as a diffusion model and there exists uncertainty to decide the value of the diffusion coefficients. The simulation by the SONIC has resulted in a few times larger ion flux towards the divertor plate than the experimental value observed in JT-60U possibly due to such an uncertainty of the diffusion process. To achieve the quantitative agreement between the experiments and the simulation results is indispensable to predict SOL/divertor plasma parameters of the future fusion devices. Here, radial transport was simulated by considering large-angle elastic scattering between ions and neutral particles and by applying the probability distribution function to fluid equations in the divertor plasma. It was found that the density peak and ion flux are reduced by about half.

UR - http://www.scopus.com/inward/record.url?scp=85112667757&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85112667757&partnerID=8YFLogxK

U2 - 10.1585/pfr.16.2403021

DO - 10.1585/pfr.16.2403021

M3 - Article

AN - SCOPUS:85112667757

VL - 16

SP - 1

EP - 5

JO - Plasma and Fusion Research

JF - Plasma and Fusion Research

SN - 1880-6821

ER -