Effect of mixing ratio on NO2 gas sensor response with SnO2-decorated carbon nanotube channels fabricated by one-step dielectrophoretic assembly

Masafumi Inaba, Takenori Oda, Masaki Kono, Nisarut Phansiri, Takahiro Morita, Shota Nakahara, Michihiko Nakano, Junya Suehiro

研究成果: Contribution to journalArticle査読


We fabricated nitrogen dioxide (NO2) gas sensors with p-type carbon nanotubes (CNTs) / n-type tin dioxide (SnO2) nanoparticle heterojunctions using one-step dielectrophoretic assembly and investigated the effect of CNT/SnO2 ratio on their NO2 gas detection properties. CNTs and SnO2 nanoparticles were mixed in various ratios, suspended in deionized water, and assembled by dielectrophoresis. The normalized response of fabricated CNT/SnO2 heterojunction gas sensors against 1 ppm NO2 was ∼80 in an N2 atmosphere and ∼20 in artificial air, where UV irradiation was used only for initialization. To reduce the effect of oxygen (O2), we also conducted continuous UV irradiation with various intensities during the initialization and gas detection. The CNT/SnO2 pn heterojunction gas sensor had a maximum normalized response of 19 for 1 ppm NO2 in artificial air, while that of the SnO2 sensor was 3. Furthermore, plotting the gas sensor response as a function of NO2 concentration reveals that the sensor detected an NO2 gas concentration as low as 20 ppb in artificial air.

ジャーナルSensors and Actuators, B: Chemical
出版ステータス出版済み - 10 1 2021

All Science Journal Classification (ASJC) codes

  • 電子材料、光学材料、および磁性材料
  • 器械工学
  • 凝縮系物理学
  • 表面、皮膜および薄膜
  • 金属および合金
  • 電子工学および電気工学
  • 材料化学


「Effect of mixing ratio on NO<sub>2</sub> gas sensor response with SnO<sub>2</sub>-decorated carbon nanotube channels fabricated by one-step dielectrophoretic assembly」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。