Effect of polymer backbone flexibility on blue phase liquid crystal stabilization

Rijeesh Kizhakidathazhath, Hiroki Higuchi, Yasushi Okumura, Hirotsugu Kikuchi

研究成果: ジャーナルへの寄稿記事

3 引用 (Scopus)

抜粋

In this study, we synthesized two novel monofunctional acrylate monomers A0DA and A3DA featuring a benzene core and a dodecyl tail, and then investigated their effect on blue phase liquid crystal (BPLC) stabilization. The benzene core is directly linked to the acrylate unit in A0DA, which forms a rigid polymeric backbone. Whereas in A3DA,a propyl spacer is employed to separate the benzene unit from the acrylate group, thereby allowing backbone mobility. By using A0DA as a monofunctional monomer in the BPLC precursor composite, stabilization of BPLC was not seen upon photopolymerization. Interestingly, the use of A3DA showed successful stabilization of BPI lattice structure after polymerization. These results confirm that the origin of stabilization effect of blue phase is the flexibility of A3DA backbone employed; therefore, the polymeric backbone flexibility is suggested to have a major influence on BP stabilization process. Furthermore, we demonstrated a low voltage electro-optical switching of PS-BPLC built on A3DA, while preserving other desirable properties of BPLC. The present study provides useful insight into monomer designs towards BPLC stabilization and enhancement of electro-optical performance.

元の言語英語
ページ(範囲)175-179
ページ数5
ジャーナルJournal of Molecular Liquids
262
DOI
出版物ステータス出版済み - 7 15 2018

    フィンガープリント

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Condensed Matter Physics
  • Spectroscopy
  • Physical and Theoretical Chemistry
  • Materials Chemistry

これを引用