TY - JOUR
T1 - Effect of twins on crystal growth of polycrystalline silicon for solar cells
AU - Miyahara, Hirofumi
AU - Nara, Seiko
AU - Okugawa, Masayuki
AU - Ogi, Keisaku
PY - 2004/10
Y1 - 2004/10
N2 - The microstructure of polycrystalline silicon has been investigated through a unidirectional solidification technique, and the mechanism of the twin growth on a reentrant corner has been evaluated. A columnar structure is observed in the rod-like silicone specimens, which are solidified at a velocity from 1.25 to 40 μm/s in an electric resistance furnace with a positive temperature gradient of 20 K/cm. At slow velocity from 1.25 to 2.5 μm/s, the grain sizes increase as solidification proceeds. However, mean grain sizes decrease with increasing solidification velocity, and at the central part of specimens the equiaxed grains appear above a critical velocity of around 40 μm/s. Most of the columnar grains have twin boundaries in them, and grains with several twins grow larger than twin-free grains. To increase grain size, it is necessary to keep the solidification velocity low and to introduce the twins. The supercooling of directional growth is less than 4 K at a velocity from 2.5 to 30 μm/s. A model of two-dimensional nucleation on the reentrant corner has been established and their critical nucleation radii are calculated from 70% to 80% of the radii of those of general two-dimensional nucleation. The decrease of the critical radius on the reentrant corner would reduce the supercooling of grain growth. Therefore, the grains with twins could preferentially grow and enlarge in a competitive growth.
AB - The microstructure of polycrystalline silicon has been investigated through a unidirectional solidification technique, and the mechanism of the twin growth on a reentrant corner has been evaluated. A columnar structure is observed in the rod-like silicone specimens, which are solidified at a velocity from 1.25 to 40 μm/s in an electric resistance furnace with a positive temperature gradient of 20 K/cm. At slow velocity from 1.25 to 2.5 μm/s, the grain sizes increase as solidification proceeds. However, mean grain sizes decrease with increasing solidification velocity, and at the central part of specimens the equiaxed grains appear above a critical velocity of around 40 μm/s. Most of the columnar grains have twin boundaries in them, and grains with several twins grow larger than twin-free grains. To increase grain size, it is necessary to keep the solidification velocity low and to introduce the twins. The supercooling of directional growth is less than 4 K at a velocity from 2.5 to 30 μm/s. A model of two-dimensional nucleation on the reentrant corner has been established and their critical nucleation radii are calculated from 70% to 80% of the radii of those of general two-dimensional nucleation. The decrease of the critical radius on the reentrant corner would reduce the supercooling of grain growth. Therefore, the grains with twins could preferentially grow and enlarge in a competitive growth.
UR - http://www.scopus.com/inward/record.url?scp=10444244299&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=10444244299&partnerID=8YFLogxK
U2 - 10.2320/jinstmet.68.919
DO - 10.2320/jinstmet.68.919
M3 - Article
AN - SCOPUS:10444244299
SN - 0021-4876
VL - 68
SP - 919
EP - 926
JO - Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals
JF - Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals
IS - 10
ER -