TY - JOUR
T1 - Effects of antiphase domain size and twin platelet width on the hardness of an ordered CuAu alloy
AU - Shiraishi, Takanobu
AU - Ohta, Michio
AU - Nakagawa, Masaharu
PY - 1995/1/1
Y1 - 1995/1/1
N2 - Effects of antiphase domain (APD) size and inter-twin spacing on the hardness of CuAu I-phase in the overaging stage were investigated by hardness testing, transmission electron microscopy, and X-ray powder diffraction. Overaging in CuAu I-phase upon progressive ordering at 300°C was found to proceed through three stages: stages I through III. In the stage I, twinning actively occurred, and most of the coherency strains were removed. Average inter-twin spacing slightly increased. These microstructural evolutions slightly decreased the hardness of the alloy. In the stage II, both APD size and average inter-twin spacing grew larger with time, leading to a continuous decrease in hardness. In the stage III, the APD size markedly grew larger, while the growth rate of average inter-twin spacing markedly slowed down. The continuous growth of APD size apparently-contributed to the further decrease in hardness. Although the crystal structure changes during the CuAu I ordering, a perfectly ordered alloy with no planar defects was suggested to be not so strong as the corresponding disordered alloy.
AB - Effects of antiphase domain (APD) size and inter-twin spacing on the hardness of CuAu I-phase in the overaging stage were investigated by hardness testing, transmission electron microscopy, and X-ray powder diffraction. Overaging in CuAu I-phase upon progressive ordering at 300°C was found to proceed through three stages: stages I through III. In the stage I, twinning actively occurred, and most of the coherency strains were removed. Average inter-twin spacing slightly increased. These microstructural evolutions slightly decreased the hardness of the alloy. In the stage II, both APD size and average inter-twin spacing grew larger with time, leading to a continuous decrease in hardness. In the stage III, the APD size markedly grew larger, while the growth rate of average inter-twin spacing markedly slowed down. The continuous growth of APD size apparently-contributed to the further decrease in hardness. Although the crystal structure changes during the CuAu I ordering, a perfectly ordered alloy with no planar defects was suggested to be not so strong as the corresponding disordered alloy.
UR - http://www.scopus.com/inward/record.url?scp=0029225471&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0029225471&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:0029225471
SN - 0272-9172
VL - 362
SP - 117
EP - 122
JO - Materials Research Society Symposium - Proceedings
JF - Materials Research Society Symposium - Proceedings
T2 - Proceedings of the 1994 MRS Fall Meeting
Y2 - 28 November 1994 through 30 November 1994
ER -